ﻻ يوجد ملخص باللغة العربية
This article presents results for the last unknown two-loop contributions to the $Z$-boson partial widths and $Z$-peak cross-section. These are the so-called bosonic electroweak two-loop corrections, where bosonic refers to diagrams without closed fermion loops. Together with the corresponding results for the $Z$-pole asymmetries $A_l, A_b$, which have been presented earlier, this completes the theoretical description of $Z$-boson precision observables at full two-loop precision within the Standard Model. The calculation has been achieved through a combination of different methods: (a) numerical integration of Mellin-Barnes representations with contour rotations and contour shifts to improve convergence; (b) sector decomposition with numerical integration over Feynman parameters; (c) dispersion relations for sub-loop insertions. Numerical results are presented in the form of simple parameterization formulae for the total width, $Gamma_{rm Z}$, partial decay widths $Gamma_{e,mu},Gamma_{tau},Gamma_{ u},Gamma_{u},Gamma_{c},Gamma_{d,s},Gamma_{b}$, branching ratios $R_l,R_c,R_b$ and the hadronic peak cross-section, $sigma_{rm had}^0$. Theoretical intrinsic uncertainties from missing higher orders are also discussed.
In this paper we present the complete two-loop vertex corrections to scalar and pseudo-scalar Higgs boson production for general colour factors for the gauge group ${rm SU(N)}$ in the limit where the top quark mass gets infinite. We derive a general
The next-to-leading-order electroweak corrections to $ppto l^+l^-/bar u u+gamma+X$ production, including all off-shell effects of intermediate Z bosons in the complex-mass scheme, are calculated for LHC energies, revealing the typically expected larg
Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass sch
We present Standard Model predictions for the complete set of phenomenologically relevant electroweak precision pseudo-observables related to the Z-boson: the leptonic and bottom-quark effective weak mixing angles $sin^2theta_{rm eff}^ell$, $sin^2the
We calculate the full one-loop electroweak radiative corrections, of ${cal O}(alpha^2alpha_s)$, to the cross section of single $Z$-boson inclusive hadroproduction at finite transverse momentum ($p_T$). This includes the ${cal O}(alpha)$ corrections t