ﻻ يوجد ملخص باللغة العربية
The evolution of the Milky Way disk, which contains most of the stars in the Galaxy, is affected by several phenomena. For example, the bar and the spiral arms of the Milky Way induce radial migration of stars and can trap or scatter stars close to orbital resonances. External perturbations from satellite galaxies can also have a role, causing dynamical heating of the Galaxy, ring-like structures in the disk and correlations between different components of the stellar velocity. These perturbations can also cause phase wrapping signatures in the disk, such as arched velocity structures in the motions of stars in the Galactic plane. Some manifestations of these dynamical processes have already been detected, including kinematic substructure in samples of nearby stars, density asymmetries and velocities across the Galactic disk that differ from the axisymmetric and equilibrium expectations, especially in the vertical direction, and signatures of incomplete phase mixing in the disk. Here we report an analysis of the motions of six million stars in the Milky Way disk. We show that the phase-space distribution contains different substructures with various morphologies, such as snail shells and ridges, when spatial and velocity coordinates are combined. We infer that the disk must have been perturbed between 300 million and 900 million years ago, consistent with estimates of the previous pericentric passage of the Sagittarius dwarf galaxy. Our findings show that the Galactic disk is dynamically young and that modelling it as time-independent and axisymmetric is incorrect.
Identifying the structure of our Galaxy has always been fraught with difficulties, and while modern surveys continue to make progress building a map of the Milky Way, there is still much to understand. The arm and bar features are important drivers i
We use the extensive $Gaia$ Data Release 2 set of Long Period Variables to select a sample of Oxygen-rich Miras throughout the Milky Way disk and bulge for study. Exploiting the relation between Mira pulsation period and stellar age/chemistry, we sli
An oscillating vertical displacement of the Milky Way, with a wavelength of about 8 kpc and and amplitude of about 100 pc (increasing with distance from the Galactic center) is observed towards the Galactic anticenter. These oscillations are thought
The Milky Way disk consists of two prominent components - a thick, alpha-rich, low-metallicity component and a thin, metal-rich, low-alpha component. External galaxies have been shown to contain thin and thick disk components, but whether distinct co
We explore the local volume of the Milky Way via chemical and kinematical measurements from high quality astrometric and spectroscopic data recently released by the Gaia, APOGEE and GALAH programs. We chemically select $1137$ stars up to $2.5$~kpc