ﻻ يوجد ملخص باللغة العربية
The Milky Way disk consists of two prominent components - a thick, alpha-rich, low-metallicity component and a thin, metal-rich, low-alpha component. External galaxies have been shown to contain thin and thick disk components, but whether distinct components in the [$alpha$/Fe]-[Z/H] plane exist in other Milky Way-like galaxies is not yet known. We present VLT-MUSE observations of UGC 10738, a nearby, edge-on Milky Way-like galaxy. We demonstrate through stellar population synthesis model fitting that UGC 10738 contains alpha-rich and alpha-poor stellar populations with similar spatial distributions to the same components in the Milky Way. We discuss how the finding that external galaxies also contain chemically distinct disk components may act as a significant constraint on the formation of the Milky Ways own thin and thick disk.
We analyze 494 main sequence turnoff and subgiant stars from the AMBRE:HARPS survey. These stars have accurate astrometric information from textit{Gaia}/DR1, providing reliable age estimates with relative uncertainties of $pm1-2$ Gyr and allowing pre
In the Milky Way, the thick disk can be defined using individual stellar abundances, kinematics, or age; or geometrically, as stars high above the mid-plane. In nearby galaxies, where only a geometric definition can be used, thick disks appear to hav
Using a sample of red giant stars from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16, we infer the conditional distribution $p([alpha/text{Fe}],|,[text{Fe/H}])$ in the Milky Way disk for the $alpha$-elements Mg,
We analyse the structure and chemical enrichment of a Milky Way-like galaxy with a stellar mass of 2 10^{10} M_sun, formed in a cosmological hydrodynamical simulation. It is disk-dominated with a flat rotation curve, and has a disk scale length simil
We present deep ACS images of 3 fields in the edge-on disk galaxy NGC 891, which extend from the plane of the disk to 12 kpc, and out to 25 kpc along the major axis. The photometry of individual stars reaches 2.5 magnitudes below the tip of the RGB.