ترغب بنشر مسار تعليمي؟ اضغط هنا

NHDS: The New Hampshire Dispersion Relation Solver

220   0   0.0 ( 0 )
 نشر من قبل Daniel Verscharen
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniel Verscharen




اسأل ChatGPT حول البحث

NHDS is the New Hampshire Dispersion Relation Solver. This article describes the numerics of the solver and its capabilities. The code is available for download on https://github.com/danielver02/NHDS.



قيم البحث

اقرأ أيضاً

241 - Daniel Verscharen 2018
The Arbitrary Linear Plasma Solver (ALPS) is a parallelised numerical code that solves the dispersion relation in a hot (even relativistic) magnetised plasma with an arbitrary number of particle species with arbitrary gyrotropic equilibrium distribut ion functions for any direction of wave propagation with respect to the background field. ALPS reads the background momentum distributions as tables of values on a $(p_{perp},p_{parallel})$ grid, where $p_{perp}$ and $p_{parallel }$ are the momentum coordinates in the directions perpendicular and parallel to the background magnetic field, respectively. We present the mathematical and numerical approach used by ALPS and introduce our algorithms for the handling of poles and the analytic continuation for the Landau contour integral. We then show test calculations of dispersion relations for a selection of stable and unstable configurations in Maxwellian, bi-Maxwellian, $kappa$-distributed, and Juttner-distributed plasmas. These tests demonstrate that ALPS derives reliable plasma dispersion relations. ALPS will make it possible to determine the properties of waves and instabilities in the non-equilibrium plasmas that are frequently found in space, laboratory experiments, and numerical simulations.
The Earths magnetosphere represents a natural plasma laboratory that allows us to study the behavior of particle distribution functions in the absence of Coulomb collisions, typically described by the Kappa distributions. We have investigated the pro perties of these functions for ions and electrons in different magnetospheric regions, thereby making it possible to reveal the $kappa$-parameters for a wide range of plasma beta ($beta$) values (from $10^{-3}$ to $10^{2}$). This was done using simultaneous ion and electron measurements from the five Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft spanning the years 2008 to 2018. It was found that for a fixed plasma $beta$, the $kappa$-index and core energy ($E_c$) of the distribution can be modeled by the power-law $kappa=AE_c^gamma$ for both species, and the relation between $beta$, $kappa$, and $E_c$ is much more complex than earlier reported: both $A$ and $gamma$ exhibit systematic dependencies with $beta$. Our results indicate that $beta sim 0.1-0.3$ is a range where the plasma is more dynamic since it is influenced by both the magnetic field and temperature fluctuations, which suggests that the transition between magnetically dominated plasmas to kinetically dominated plasmas occurs at these values of $beta$. For $beta > 1 $, both $A$ and $gamma$ take nearly constant values, a feature that is especially notable for the electrons and might be related to their demagnetization. The relation between $beta$, $kappa$, and $E_c$ that we present is an important result that can be used by theoretical models in the future.
A new look at the structure of the electron diffusion region in collisionless magnetic reconnection is presented. The research is based on a particle-in-cell simulation of asymmetric magnetic reconnection, which include a temperature gradient across the current layer in addition to density and magnetic field gradient. We find that none of X-point, flow stagnation point, and local current density peak coincide. Current and energy balance analyses around the flow stagnation point and current density peak show consistently that current dissipation is associated with the divergence of nongyrotropic electron pressure. Furthermore, the same pressure terms, when combined with shear-type gradients of the electron flow velocity, also serve to maintain local thermal energy against convective losses. These effects are similar to those found also in symmetric magnetic reconnection. In addition, we find here significant effects related to the convection of current, which we can relate to a generalized diamagnetic drift by the nongyrotropic pressure divergence. Therefore, only part of the pressure force serves to dissipate the current density. However, the prior conclusion that the role of the reconnection electric field is to maintain the current density, which was obtained for a symmetric system, applies here as well. Finally, we discuss related features of electron distribution function in the EDR.
We study the multi-dimensional radiative transfer phenomena using the ISMC scheme, in both gray and multi-frequency problems. Implicit Monte-Carlo (IMC) schemes have been in use for five decades. The basic algorithm yields teleportation errors, where photons propagate faster than the correct heat front velocity. Recently [Poette and Valentin, J. Comp. Phys., 412, 109405 (2020)], a new implicit scheme based on the semi-analog scheme was presented and tested in several one-dimensional gray problems. In this scheme, the material energy of the cell is carried by material-particles, and the photons are produced only from existing material particles. As a result, the teleportation errors vanish, due to the infinite discrete spatial accuracy of the scheme. We examine the validity of the new scheme in two-dimensional problems, both in Cartesian and Cylindrical geometries. Additionally, we introduce an expansion of the new scheme for multi-frequency problems. We show that the ISMC scheme presents excellent results without teleportation errors in a large number of benchmarks, especially against the slow classic IMC convergence.
Context: The analysis of the thermal part of velocity distribution functions (VDF) is fundamentally important for understanding the kinetic physics that governs the evolution and dynamics of space plasmas. However, calculating the proton core, beam a nd alpha-particle parameters for large data sets of VDFs is a time consuming and computationally demanding process that always requires supervision by a human expert. Aims: We developed a machine learning tool that can extract proton core, beam and alpha-particle parameters using images (2-D grid consisting pixel values) of VDFs. Methods: A database of synthetic VDFs is generated, which is used to train a convolutional neural network that infers bulk speed, thermal speed and density for all three particle populations. We generate a separate test data set of synthetic VDFs that we use to compare and quantify the predictive power of the neural network and a fitting algorithm. Results: The neural network achieves significantly smaller root-mean-square errors to infer proton core, beam and alpha-particle parameters than a traditional fitting algorithm. Conclusion: The developed machine learning tool has the potential to revolutionize the processing of particle measurements since it allows the computation of more accurate particle parameters than previously used fitting procedures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا