ﻻ يوجد ملخص باللغة العربية
[Background] Experimental data from heavy-ion experiments at RHIC-BNL and LHC-CERN are quantitatively described using relativistic fluid dynamics. Even p+A and p+p collisions show signs of collective behavior describable in the same manner. Nevertheless, small system sizes and large gradients strain the limits of applicability of fluid-dynamical methods. [Purpose] The range of applicability of fluid dynamics for the description of the collective behavior, and in particular of the elliptic flow, of small systems needs to be explored. [Method] Results of relativistic fluid-dynamical simulations are compared with solutions of the Boltzmann equation in a longitudinally boost-invariant picture. As initial condition, several different transverse energy-density profiles for equilibrated matter are investigated. [Results] While there is overall a fair agreement of energy- and particle-density profiles, components of the shear-stress tensor are more sensitive to details of the implementation. The highest sensitivity is exhibited by quantities influenced by properties of the medium at freeze-out. [Conclusions] For some quantities, like the shear-stress tensor, agreement between fluid dynamics and transport theory extends into regions of Knudsen numbers and inverse Reynolds numbers where relativistic fluid dynamics is believed to fail.
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame
In this work we present a general derivation of relativistic fluid dynamics from the Boltzmann equation using the method of moments. The main difference between our approach and the traditional 14-moment approximation is that we will not close the fl
We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we on
In Molnar et al. [Phys. Rev. D 93, 114025 (2016)] the equations of anisotropic dissipative fluid dynamics were obtained from the moments of the Boltzmann equation based on an expansion around an arbitrary anisotropic single-particle distribution func
We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grads 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.