ترغب بنشر مسار تعليمي؟ اضغط هنا

Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models

59   0   0.0 ( 0 )
 نشر من قبل Alexander M. Rush
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural Sequence-to-Sequence models have proven to be accurate and robust for many sequence prediction tasks, and have become the standard approach for automatic translation of text. The models work in a five stage blackbox process that involves encoding a source sequence to a vector space and then decoding out to a new target sequence. This process is now standard, but like many deep learning methods remains quite difficult to understand or debug. In this work, we present a visual analysis tool that allows interaction with a trained sequence-to-sequence model through each stage of the translation process. The aim is to identify which patterns have been learned and to detect model errors. We demonstrate the utility of our tool through several real-world large-scale sequence-to-sequence use cases.



قيم البحث

اقرأ أيضاً

Sequence-to-sequence models are a powerful workhorse of NLP. Most variants employ a softmax transformation in both their attention mechanism and output layer, leading to dense alignments and strictly positive output probabilities. This density is was teful, making models less interpretable and assigning probability mass to many implausible outputs. In this paper, we propose sparse sequence-to-sequence models, rooted in a new family of $alpha$-entmax transformations, which includes softmax and sparsemax as particular cases, and is sparse for any $alpha > 1$. We provide fast algorithms to evaluate these transformations and their gradients, which scale well for large vocabulary sizes. Our models are able to produce sparse alignments and to assign nonzero probability to a short list of plausible outputs, sometimes rendering beam search exact. Experiments on morphological inflection and machine translation reveal consistent gains over dense models.
This paper presents an empirical study of conversational question reformulation (CQR) with sequence-to-sequence architectures and pretrained language models (PLMs). We leverage PLMs to address the strong token-to-token independence assumption made in the common objective, maximum likelihood estimation, for the CQR task. In CQR benchmarks of task-oriented dialogue systems, we evaluate fine-tuned PLMs on the recently-introduced CANARD dataset as an in-domain task and validate the models using data from the TREC 2019 CAsT Track as an out-domain task. Examining a variety of architectures with different numbers of parameters, we demonstrate that the recent text-to-text transfer transformer (T5) achieves the best results both on CANARD and CAsT with fewer parameters, compared to similar transformer architectures.
In this paper, we study the problem of data augmentation for language understanding in task-oriented dialogue system. In contrast to previous work which augments an utterance without considering its relation with other utterances, we propose a sequen ce-to-sequence generation based data augmentation framework that leverages one utterances same semantic alternatives in the training data. A novel diversity rank is incorporated into the utterance representation to make the model produce diverse utterances and these diversely augmented utterances help to improve the language understanding module. Experimental results on the Airline Travel Information System dataset and a newly created semantic frame annotation on Stanford Multi-turn, Multidomain Dialogue Dataset show that our framework achieves significant improvements of 6.38 and 10.04 F-scores respectively when only a training set of hundreds utterances is represented. Case studies also confirm that our method generates diverse utterances.
Sequence-to-sequence models have been applied to a wide variety of NLP tasks, but how to properly use them for dialogue state tracking has not been systematically investigated. In this paper, we study this problem from the perspectives of pre-trainin g objectives as well as the formats of context representations. We demonstrate that the choice of pre-training objective makes a significant difference to the state tracking quality. In particular, we find that masked span prediction is more effective than auto-regressive language modeling. We also explore using Pegasus, a span prediction-based pre-training objective for text summarization, for the state tracking model. We found that pre-training for the seemingly distant summarization task works surprisingly well for dialogue state tracking. In addition, we found that while recurrent state context representation works also reasonably well, the model may have a hard time recovering from earlier mistakes. We conducted experiments on the MultiWOZ 2.1-2.4, WOZ 2.0, and DSTC2 datasets with consistent observations.
396 - Kaitao Song , Xu Tan , Tao Qin 2019
Pre-training and fine-tuning, e.g., BERT, have achieved great success in language understanding by transferring knowledge from rich-resource pre-training task to the low/zero-resource downstream tasks. Inspired by the success of BERT, we propose MAsk ed Sequence to Sequence pre-training (MASS) for the encoder-decoder based language generation tasks. MASS adopts the encoder-decoder framework to reconstruct a sentence fragment given the remaining part of the sentence: its encoder takes a sentence with randomly masked fragment (several consecutive tokens) as input, and its decoder tries to predict this masked fragment. In this way, MASS can jointly train the encoder and decoder to develop the capability of representation extraction and language modeling. By further fine-tuning on a variety of zero/low-resource language generation tasks, including neural machine translation, text summarization and conversational response generation (3 tasks and totally 8 datasets), MASS achieves significant improvements over the baselines without pre-training or with other pre-training methods. Specially, we achieve the state-of-the-art accuracy (37.5 in terms of BLEU score) on the unsupervised English-French translation, even beating the early attention-based supervised model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا