ﻻ يوجد ملخص باللغة العربية
We classify all quadratic homogeneous polynomial maps $H$ and Keller maps of the form $x + H$, for which $rk J H = 3$, over a field $K$ of arbitrary characteristic. In particular, we show that such a Keller map (up to a square part if $char K=2$) is a tame automorphism.
We compute by hand all quadratic homogeneous polynomial maps $H$ and all Keller maps of the form $x + H$, for which ${rm rk} J H = 3$, over a field of arbitrary characteristic. Furthermore, we use computer support to compute Keller maps of the form
We classify Keller maps $x + H$ in dimension $n$ over fields with $tfrac16$, for which $H$ is homogeneous, and (1) deg $H = 3$ and rk $JH le 2$; (2) deg $H = 3$ and $n le 4$; (3) deg $H = 4$ and $n le 3$; (4) deg $H = 4 = n$ and $H_1, H_2, H_
Let $K$ be any field with $textup{char}K eq 2,3$. We classify all cubic homogeneous polynomial maps $H$ over $K$ with $textup{rk} JHleq 2$. In particular, we show that, for such an $H$, if $F=x+H$ is a Keller map then $F$ is invertible, and furthermore $F$ is tame if the dimension $n eq 4$.
Let $K$ be any field and $x = (x_1,x_2,ldots,x_n)$. We classify all matrices $M in {rm Mat}_{m,n}(K[x])$ whose entries are polynomials of degree at most 1, for which ${rm rk} M le 2$. As a special case, we describe all such matrices $M$, which are th
Motivated by the dynamical uniform boundedness conjecture of Morton and Silverman, specifically in the case of quadratic polynomials, we give a formal construction of a certain class of dynamical analogues of classical modular curves. The preperiodic