ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman scattering study of NaFe$_{0.53}$Cu$_{0.47}$As

133   0   0.0 ( 0 )
 نشر من قبل Weilu Zhang
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use polarization-resolved Raman scattering to study lattice dynamics in NaFe$_{0.53}$Cu$_{0.47}$As single crystals. We identify 4 $A_{1g}$ phonon modes at 125, 172, 183 and 197 cm$^{-1}$, and 4 $B_{3g}$ phonon modes at 101, 138, 173, 226 cm$^{-1}$. The phonon spectra are consistent with the $Ibam$ group, which confirms that the Cu and Fe atoms form a stripe order. The temperature dependence of the phonon spectra suggests weak electron-phonon and magneto-elastic interactions.

قيم البحث

اقرأ أيضاً

The parent compounds of iron-based superconductors are magnetically-ordered bad metals, with superconductivity appearing near a putative magnetic quantum critical point. The presence of both Hubbard repulsion and Hunds coupling leads to rich physics in these multiorbital systems, and motivated descriptions of magnetism in terms of itinerant electrons or localized spins. The NaFe$_{1-x}$Cu$_x$As series consists of magnetically-ordered bad metal ($x=0$), superconducting ($xapprox0.02$) and magnetically-ordered semiconducing/insulating ($xapprox0.5$) phases, providing a platform to investigate the connection between superconductivity, magnetism and electronic correlations. Here we use X-ray absorption spectroscopy and resonant inelastic X-ray scattering to study the valence state of Fe and spin dynamics in two NaFe$_{1-x}$Cu$_x$As compounds ($x=0$ and 0.47). We find that magnetism in both compounds arises from Fe$^{2+}$ atoms, and exhibits underdamped dispersive spin waves in their respective ordered states. The dispersion of spin excitations in NaFe$_{0.53}$Cu$_{0.47}$As is consistent with being quasi-one-dimensional. Compared to NaFeAs, the band top of spin waves in NaFe$_{0.53}$Cu$_{0.47}$As is slightly softened with significantly more spectral weight of the spin excitations. Our results indicate the spin dynamics in NaFe$_{0.53}$Cu$_{0.47}$As arise from localized magnetic moments and suggest the iron-based superconductors are proximate to a correlated insulating state with localized iron moments.
75 - Y. Lin , T. Koga , 2004
We report the effect of the insertion of an InP/In$_{0.53}$Ga$_{47}$As Interface on Rashba spin-orbit interaction in In$_{0.52}$Al$_{0.48}$As/In$_{0.53}$Ga$_{0.47}$As quantum wells. A small spin split-off energy in InP produces a very intriguing band lineup in the valence bands in this system. With or without this InP layer above the In$_{0.53}$Ga$_{47}$As well, the overall values of the spin-orbit coupling constant $alpha$ turned out to be enhanced or diminished for samples with the front- or back-doping position, respectively. These experimental results, using weak antilocalization analysis, are compared with the results of the $mathbf{kcdot p}$ theory. The actual conditions of the interfaces and materials should account for the quantitative difference in magnitude between the measurements and calculations.
229 - A. F. Wang , J. J. Lin , P. Cheng 2013
A series of high quality NaFe$_{1-x}$Cu$_x$As single crystals has been grown by a self-flux technique, which were systematically characterized via structural, transport, thermodynamic, and high pressure measurements. Both the structural and magnetic transitions are suppressed by Cu doping, and bulk superconductivity is induced by Cu doping. Superconducting transition temperature ($T_c$) is initially enhanced from 9.6 to 11.5 K by Cu doping, and then suppressed with further doping. A phase diagram similar to NaFe$_{1-x}$Co$_x$As is obtained except that insulating instead of metallic behavior is observed in extremely overdoped samples. $T_c$s of underdoped, optimally doped, and overdoped samples are all notably enhanced by applying pressure. Although a universal maximum transition temperature ($T_c^{max}$) of about 31 K under external pressure is observed in underdoped and optimally doped NaFe$_{1-x}$Co$_x$As, $T_c^{max}$ of NaFe$_{1-x}$Cu$_x$As is monotonously suppressed by Cu doping, suggesting that impurity potential of Cu is stronger than Co in NaFeAs. The comparison between Cu and Co doping effect in NaFeAs indicates that Cu serves as an effective electron dopant with strong impurity potential, but part of the doped electrons are localized and do not fill the energy bands as predicted by the rigid-band model.
Electrical transport measurements are used to study the Rh-doped NaFeAs superconductor series with a focus on the tetragonal phase. The resistivity curvature has an anomalous temperature dependence evidencing in the phase diagram two crossover region s of changes in the scattering rate, the effective mass as well as of the charge carrier density. The first crossover region is directly connected to the structural transition and resembles the onset of resistivity anisotropy. The second crossover region can as well be deduced from the temperature dependent Hall coefficient. A comparison to literature NMR data suggests this region to be connected with nematic fluctuations far above the tetragonal to orthorhombic phase transition.
The polarized Raman scattering spectra from freshly cleaved $ab$, $ac$, and $bc$ surfaces of high quality twin free YBa$_2$Cu$_3$O$_{6.5}$ (Ortho-II) single crystals ($T_c$=57.5 K and $Delta T = 0.6$ K) were studied between 80 and 300 K. All eleven $ A_g$ Raman modes expected for the Ortho-II structure as well some modes of $B_{2g}$ and $B_{3g}$ symmetry were identified in close comparison with predictions of lattice dynamical calculations. The electronic scattering from the $ab$ planes is strongly anisotropic and decreases between 200 and 100 K within the temperature range of previously reported pseudogap opening. The coupling of phonons to Raman active electronic excitations manifested by asymmetric (Fano) profiles of several modes also decreases in the same range. Among the new findings that distinguish the Raman scattering of Ortho-II from that of Ortho-I phase is the unusual relationship ($alpha_{xx} approx -alpha_{yy}$) between the elements of the Raman tensor of the apex oxygen $A_g$ mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا