ﻻ يوجد ملخص باللغة العربية
This paper proposes a spintronic neuron structure composed of a heterostructure of magnets and a piezoelectric with a magnetic tunnel junction (MTJ). The operation of the device is simulated using SPICE models. Simulation results illustrate that the energy dissipation of the proposed neuron compared to that of other spintronic neurons exhibits 70% improvement. Compared to CMOS neurons, the proposed neuron occupies a smaller footprint area and operates using less energy. Owing to its versatility and low-energy operation, the proposed neuron is a promising candidate to be adopted in artificial neural network (ANN) systems.
A strong trend for quantum based technologies and applications follows the avenue of combining different platforms to exploit their complementary technological and functional advantages. Micro and nano-mechanical devices are particularly suitable for
We have designed a new magnetic bed structure with desirable table-like magnetocaloric effect (MCE) by using three kinds of soft ferromagnetic Gd-Al-Co microwire arrays with different Curie temperatures ($T_C$). The $T_C$ interval of these three wire
We report on the integration of large area CVD grown single- and bilayer graphene transparent conductive electrodes (TCEs) on amorphous silicon multispectral photodetectors. The broadband transmission of graphene results in 440% enhancement of the de
Many key electronic technologies (e.g., large-scale computing, machine learning, and superconducting electronics) require new memories that are fast, reliable, energy-efficient, and of low-impedance at the same time, which has remained a challenge. N
Graphene on ferroelectric structures can be promising candidates for advanced field effect transistors, modulators and electrical transducers, providing that research of their electrotransport and electromechanical performances can be lifted up from