ﻻ يوجد ملخص باللغة العربية
We investigate the effect of equilibrium topology on the statistics of non-equilibrium work performed during the subsequent unitary evolution, following a sudden quench of the Semenoff mass of the Haldane model. We show that the resulting work distribution function for quenches performed on the Haldane Hamiltonian with broken time reversal symmetry (TRS) exhibits richer universal characteristics as compared to those performed on the time-reversal symmetric massive graphene limit whose work distribution function we have also evaluated for comparison. Importantly, our results show that the work distribution function exhibits different universal behaviors following the non-equilibrium dynamics of the system for small $phi$ (argument of complex next nearest neighbor hopping) and large $phi$ limits, although the two limits belong to the same equilibrium universality class.
The local quench of a Fermi gas, giving rise to the Fermi edge singularity and the Anderson orthogonality catastrophe, is a rare example of an analytically tractable out of equilibrium problem in condensed matter. It describes the universal physics w
We propose an experimental setup to measure the work performed in a normal-metal/insulator/superconducting (NIS) junction, subjected to a voltage change and in contact with a thermal bath. We compute the performed work and argue that the associated h
We derive a systematic, multiple time-scale perturbation expansion for the work distribution in isothermal quasi-static Langevin processes. To first order we find a Gaussian distribution reproducing the result of Speck and Seifert [Phys. Rev. E 70, 0
In a finite time quantum quench of the Haldane model, the Chern number determining the topology of the bulk remains invariant, as long as the dynamics is unitary. Nonetheless, the corresponding boundary attribute, the edge current, displays interesti
Work statistics characterizes important features of a non-equilibrium thermodynamic process. But the calculation of the work statistics in an arbitrary non-equilibrium process is usually a cumbersome task. In this work, we study the work statistics i