ﻻ يوجد ملخص باللغة العربية
The local quench of a Fermi gas, giving rise to the Fermi edge singularity and the Anderson orthogonality catastrophe, is a rare example of an analytically tractable out of equilibrium problem in condensed matter. It describes the universal physics which occurs when a localized scattering potential is suddenly introduced in a Fermi sea leading to a brutal disturbance of the quantum state. It has recently been proposed that the effect could be efficiently simulated in a controlled manner using the tunability of ultra-cold atoms. In this work, we analyze the quench problem in a gas of trapped ultra-cold fermions from a thermodynamic perspective using the full statistics of the so called work distribution. The statistics of work are shown to provide an accurate insight into the fundamental physics of the process.
We investigate the effect of equilibrium topology on the statistics of non-equilibrium work performed during the subsequent unitary evolution, following a sudden quench of the Semenoff mass of the Haldane model. We show that the resulting work distri
We consider a one-dimensional gas of $N$ charged particles confined by an external harmonic potential and interacting via the one-dimensional Coulomb potential. For this system we show that in equilibrium the charges settle, on an average, uniformly
We derive analogues of the Jarzynski equality and Crooks relation to characterise the nonequilibrium work associated with changes in the spring constant of an overdamped oscillator in a quadratically varying spatial temperature profile. The stationar
Abstract We study the universality of work statistics of a system quenched through a quantum critical surface. By using the adiabatic perturbation theory, we obtain the general scaling behavior for all cumulants of work. These results extend the stud
For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuat