ﻻ يوجد ملخص باللغة العربية
Optical bio-markers have been used extensively for intracellular imaging with high spatial and temporal resolution. Extending the modality of these probes is a key driver in cell biology. In recent years, the NV centre in nanodiamond has emerged as a promising candidate for bio-imaging and bio-sensing with low cytotoxicity and stable photoluminescence. Here we study the electrophysiological effects of this quantum probe in primary cortical neurons. Multi-electrode array (MEA) recordings across five replicate studies showed no statistically significant difference in 25 network parameters when nanodiamonds are added at varying concentrations over various time periods 12-36 hr. The physiological validation motivates the second part of the study which demonstrates how the quantum properties of these biomarkers can be used to report intracellular information beyond their location and movement. Using the optically detected magnetic resonance from the nitrogen vacancy defects within the nanodiamonds we demonstrate enhanced signal-to-noise imaging and temperature mapping from thousands of nanodiamond probes simultaneously. This work establishes nanodiamonds as viable multi-functional intraneuronal sensors with nanoscale resolution, that may ultimately be used to detect magnetic and electrical activity at the membrane level in excitable cellular systems.
There is a growing need for biolabels that can be used in both optical and electron microscopies, are non-cytotoxic, and do not photobleach. Such biolabels could enable targeted nanoscale imaging of sub-cellular structures, and help to establish corr
The response kinetics of liquid crystalline phosphatidylcholine bilayer stacks to rapid, IR-laser induced temperature jumps has been studied by millisecond time-resolved x-ray diffraction. The system reacts on the fast temperature change by a discret
Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in NMR and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical
We review the most recent developments in the theory of open quantum systems focusing on situations in which the reservoir memory effects, due to long-lasting and non-negligible correlations between system and environment, play a crucial role. These
Magnetic field fluctuations arising from fundamental spins are ubiquitous in nanoscale biology, and are a rich source of information about the processes that generate them. However, the ability to detect the few spins involved without averaging over