ترغب بنشر مسار تعليمي؟ اضغط هنا

Several Metric Properties of Level Curves

43   0   0.0 ( 0 )
 نشر من قبل Pisheng Ding
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Pisheng Ding




اسأل ChatGPT حول البحث

This article establishes several remarkably simple identities relating certain metric invariants of level curves of real and complex functions. In particular, we relate lengths of level curves to their curvature and to the gradient field of the function. Some geometric and analytic applications of the results are shown.



قيم البحث

اقرأ أيضاً

72 - Pisheng Ding 2018
This note establishes several integral identities relating certain metric properties of level hypersurfaces of Morse functions.
For a bilinear form obtained by adding a Dirac mass to a positive definite moment functional in several variables, explicit formulas of orthogonal polynomials are derived from the orthogonal polynomials associated with the moment functional. Explicit formula for the reproducing kernel is also derived and used to establish certain inequalities for classical orthogonal polynomials.
Four constructions for Ferrers diagram rank-metric (FDRM) codes are presented. The first one makes use of a characterization on generator matrices of a class of systematic maximum rank distance codes. By introducing restricted Gabidulin codes, the se cond construction is presented, which unifies many known constructions for FDRM codes. The third and fourth constructions are based on two different ways to represent elements of a finite field $mathbb F_{q^m}$ (vector representation and matrix representation). Each of these constructions produces optimal codes with different diagrams and parameters.
219 - Tyler Bongers , Zihua Guo , Ji Li 2019
The Hilbert transforms associated with monomial curves have a natural non-isotropic structure. We study the commutator of such Hilbert transforms and a symbol $b$ and prove the upper bound of this commutator when $b$ is in the corresponding non-isotr opic BMO space by using the Cauchy integral trick. We also consider the lower bound of this commutator by introducing a new testing BMO space associated with the given monomial curve, which shows that the classical non-isotropic BMO space is contained in the testing BMO space. We also show that the non-zero curvature of such monomial curves are important, since when considering Hilbert transforms associated with lines, the parallel version of non-isotropic BMO space and testing BMO space have overlaps but do not have containment.
The complex or non-hermitian orthogonal polynomials with analytic weights are ubiquitous in several areas such as approximation theory, random matrix models, theoretical physics and in numerical analysis, to mention a few. Due to the freedom in the c hoice of the integration contour for such polynomials, the location of their zeros is a priori not clear. Nevertheless, numerical experiments, such as those presented in this paper, show that the zeros not simply cluster somewhere on the plane, but persistently choose to align on certain curves, and in a very regular fashion. The problem of the limit zero distribution for the non-hermitian orthogonal polynomials is one of the central aspects of their theory. Several important results in this direction have been obtained, especially in the last 30 years, and describing them is one of the goals of the first parts of this paper. However, the general theory is far from being complete, and many natural questions remain unanswered or have only a partial explanation. Thus, the second motivation of this paper is to discuss some mysterious configurations of zeros of polynomials, defined by an orthogonality condition with respect to a sum of exponential functions on the plane, that appeared as a results of our numerical experiments. In this apparently simple situation the zeros of these orthogonal polynomials may exhibit different behaviors: for some of them we state the rigorous results, while other are presented as conjectures (apparently, within a reach of modern techniques). Finally, there are cases for which it is not yet clear how to explain our numerical results, and where we cannot go beyond an empirical discussion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا