ﻻ يوجد ملخص باللغة العربية
The Hilbert transforms associated with monomial curves have a natural non-isotropic structure. We study the commutator of such Hilbert transforms and a symbol $b$ and prove the upper bound of this commutator when $b$ is in the corresponding non-isotropic BMO space by using the Cauchy integral trick. We also consider the lower bound of this commutator by introducing a new testing BMO space associated with the given monomial curve, which shows that the classical non-isotropic BMO space is contained in the testing BMO space. We also show that the non-zero curvature of such monomial curves are important, since when considering Hilbert transforms associated with lines, the parallel version of non-isotropic BMO space and testing BMO space have overlaps but do not have containment.
We establish an L^2 times L^2 to L^1 estimate for the bilinear Hilbert transform along a curve defined by a monomial. Our proof is closely related to multi-linear oscillatory integrals.
In this paper, for $1<p<infty$, we obtain the $L^p$-boundedness of the Hilbert transform $H^{gamma}$ along a variable plane curve $(t,u(x_1, x_2)gamma(t))$, where $u$ is a Lipschitz function with small Lipschitz norm, and $gamma$ is a general curve s
In this paper, we determine the $L^p(mathbb{R})times L^q(mathbb{R})rightarrow L^r(mathbb{R})$ boundedness of the bilinear Hilbert transform $H_{gamma}(f,g)$ along a convex curve $gamma$ $$H_{gamma}(f,g)(x):=mathrm{p.,v.}int_{-infty}^{infty}f(x-t)g(x-
In this paper, for general plane curves $gamma$ satisfying some suitable smoothness and curvature conditions, we obtain the single annulus $L^p(mathbb{R}^2)$-boundedness of the Hilbert transforms $H^infty_{U,gamma}$ along the variable plane curves $(
In this paper we consider $L^p$ boundedness of some commutators of Riesz transforms associated to Schr{o}dinger operator $P=-Delta+V(x)$ on $mathbb{R}^n, ngeq 3$. We assume that $V(x)$ is non-zero, nonnegative, and belongs to $B_q$ for some $q geq n/