ﻻ يوجد ملخص باللغة العربية
This work is devoted to study the dynamics of the supercritical gKDV equations near solitary waves in the energy space $H^1$. We construct smooth local center-stable, center-unstable and center manifolds near the manifold of solitary waves and give a detailed description of the local dynamics near solitary waves. In particular, the instability is characterized as following: any forward flow not starting from the center-stable manifold will leave a neighborhood of the manifold of solitary waves exponentially fast. Moreover, orbital stability is proved on the center manifold, which implies the uniqueness of the center manifold and the global existence of solutions on it.
We consider nonlinear Schrodinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general loc
We study bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations (CNLS) on the line. We assume that the coupled equations possess a solution of which one component is identically zero, and call it a $textit{fu
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria
We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-e
In this paper we investigate the orbital stability of solitary waves to the (generalized) Kawahara equation (gKW) which is a fifth order dispersive equation. For some values of the power of the nonlinearity, we prove the orbital stability in the ener