ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics near the solitary waves of the supercritical gKDV Equations

52   0   0.0 ( 0 )
 نشر من قبل Chongchun Zeng
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This work is devoted to study the dynamics of the supercritical gKDV equations near solitary waves in the energy space $H^1$. We construct smooth local center-stable, center-unstable and center manifolds near the manifold of solitary waves and give a detailed description of the local dynamics near solitary waves. In particular, the instability is characterized as following: any forward flow not starting from the center-stable manifold will leave a neighborhood of the manifold of solitary waves exponentially fast. Moreover, orbital stability is proved on the center manifold, which implies the uniqueness of the center manifold and the global existence of solutions on it.



قيم البحث

اقرأ أيضاً

We consider nonlinear Schrodinger equations with either power-type or Hartree nonlinearity in the presence of an external potential. We show that for long-range nonlinearities, solutions cannot exhibit scattering to solitary waves or more general loc alized waves. This extends the well-known results concerning non-existence of non-trivial scattering states for long-range nonlinearities.
We study bifurcations and spectral stability of solitary waves in coupled nonlinear Schrodinger equations (CNLS) on the line. We assume that the coupled equations possess a solution of which one component is identically zero, and call it a $textit{fu ndamental solitary wave}$. By using a result of one of the authors and his collaborator, the bifurcations of the fundamental solitary wave are detected. We utilize the Hamiltonian-Krein index theory and Evans function technique to determine the spectral or orbital stability of the bifurcated solitary waves as well as as that of the fundamental one under some nondegenerate conditions which are easy to verify, compared with those of the previous results. We apply our theory to CNLS with a cubic nonlinearity and give numerical evidences for the theoretical results.
539 - Zhiwu Lin 2008
We consider linear instability of solitary waves of several classes of dispersive long wave models. They include generalizations of KDV, BBM, regularized Boussinesq equations, with general dispersive operators and nonlinear terms. We obtain criteria for the existence of exponentially growing solutions to the linearized problem. The novelty is that we dealt with models with nonlocal dispersive terms, for which the spectra problem is out of reach by the Evans function technique. For the proof, we reduce the linearized problem to study a family of nonlocal operators, which are closely related to properties of solitary waves. A continuation argument with a moving kernel formula are used to find the instability criteria. Recently, these techniques have also been extended to study instability of periodic waves and to the full water wave problem.
679 - Zhiwu Lin 2008
We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-e xistence of secondary bifurcation which is confirmed numerically, we prove linear instability of solitary waves which are higher than the wave of maximal energy and lower than the wave of maximal travel speed. It is also shown that there exist unstable solitary waves approaching the highest wave. The unstable waves are of large amplitude and therefore this type of instability can not be captured by the approximate models derived under small amplitude assumptions. For the proof, we introduce a family of nonlocal dispersion operators to relate the linear instability problem with the elliptic nature of solitary waves. A continuity argument with a moving kernel formula is used to study these dispersion operators to yield the instability criterion.
In this paper we investigate the orbital stability of solitary waves to the (generalized) Kawahara equation (gKW) which is a fifth order dispersive equation. For some values of the power of the nonlinearity, we prove the orbital stability in the ener gy space H 2 (R) of two branches of even solitary waves of gKW by combining the well-known spectral method introduced by Benjamin [3] with continuity arguments. We construct the first family of even solitons by applying the implicit function theorem in the neighborhood of the explicit solitons of gKW found by Dey et al. [8]. The second family consists of even travelling waves with low speeds. They are solutions of a constraint minimization problem on the line and rescaling of perturbations of the soliton of gKdV with speed 1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا