ﻻ يوجد ملخص باللغة العربية
The classification of bandstructures by topological invariants provides a powerful tool for understanding phenomena such as the quantum Hall effect. This classification was originally developed in the context of electrons, but can also be applied to photonic crystals. In this paper we study the topological classification of the refractive index surfaces of two-dimensional photonic crystals. We consider crystals formed from birefringent materials, in which the constitutive relation provides an optical spin-orbit coupling. We show that this coupling, in conjunction with optical activity, can lead to a gapped set of index surfaces with non-zero Chern numbers. This method for designing photonic Chern insulators exploits birefringence rather than lattice structure, and does not require band crossings originating from specific lattice geometries.
The recent realizations of topological valley phase in photonic crystal, an analog of gapped valleytronic materials in electronic system, are limited to the valley Chern number of one. In this letter, we present a new type of valley phase that can ha
Quadrupole topological phases, exhibiting protected boundary states that are themselves topological insulators of lower dimensions, have recently been of great interest. Extensions of these ideas from current tight binding models to continuum theorie
We clarify theoretically that the topological ring-cavity (TRC) modes propagating along the interface between two honeycomb-type photonic crystals distinct in topology can be exploited for achieving stable single-mode lasing, with the maximal intensi
In this work, a refractive index (RI) sensor with an effective integration of colorimetric detection and optical sensing capabilities has been developed. Colorimetric detection relies on the sensitivity of the structural color of photonic crystal (PC
Generating and manipulating Dirac points in artificial atomic crystals has received attention especially in photonic systems due to their ease of implementation. In this paper, we propose a two-dimensional photonic crystal made of a Kekule lattice of