ترغب بنشر مسار تعليمي؟ اضغط هنا

On the cohomology of meromorphic open-string vertex algebras

87   0   0.0 ( 0 )
 نشر من قبل Fei Qi
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Fei Qi




اسأل ChatGPT حول البحث

This paper generalizes Huangs cohomology theory of grading-restricted vertex algebras to meromorphic open-string vertex algebras (MOSVAs hereafter), which are noncommutative generalizations of grading-restricted vertex algebras introduced by Huang. The vertex operators for these algebras satisfy associativity but do not necessarily satisfy the commutativity. Moreover, the MOSVA and its bimodules considered in this paper do not necessarily have finite-dimensional homogeneous subspaces, though we do require that they have lower-bounded gradings. The construction and results in this paper will be used in a joint paper by Huang and the author to give a cohomological criterion of the reductivity for modules for grading-restricted vertex algebras

قيم البحث

اقرأ أيضاً

66 - Fei Qi 2020
We study the meromorphic open-string vertex algebras and their modules over the two-dimensional Riemannian manifolds that are complete, connected, orientable, and of constant sectional curvature $K eq 0$. Using the parallel tensors, we explicitly det ermine a basis for the meromorphic open-string vertex algebra, its modules generated by eigenfunctions of the Laplace-Beltrami operator, and their irreducible quotients. We also study the modules generated by lowest weight subspace satisfying a geometrically interesting condition. It is showed that every irreducible module of this type is generated by some (local) eigenfunction on the manifold. A classification is given for modules of this type admitting a composition series of finite length. In particular and remarkably, if every composition factor is generated by eigenfunctions of eigenvalue $p(p-1)K$ for some $pin mathbb{Z}_+$, then the module is completely reducible.
165 - Rina Anno 2005
Consider a smooth affine algebraic variety $X$ over an algebraically closed field, and let a finite group $G$ act on it. We assume that the characteristic of the field is greater than the dimension of $X$ and the order of $G$. An explicit formula for multiplication on the Hochschild cohomology of a crossed product of $k[G]$ and $k[X]$ is given in terms of multivector fields on $X$ and $g$-invariant subvarieties of $X$ for $gin G$.
115 - Cris Negron 2020
We prove that the Drinfeld double of an arbitrary finite group scheme has finitely generated cohomology. That is to say, for G any finite group scheme, and D(G) the Drinfeld double of the group ring kG, we show that the self-extension algebra of the trivial representation for D(G) is a finitely generated algebra, and that for each D(G)-representation V the extensions from the trivial representation to V form a finitely generated module over the aforementioned algebra. As a corollary, we find that all categories rep(G)*_M dual to rep(G) are of also of finite type (i.e. have finitely generated cohomology), and we provide a uniform bound on their Krull dimensions. This paper completes earlier work of E. M. Friedlander and the author.
127 - Fei Qi 2021
In this paper we study the first cohomologies for the following three examples of vertex operator algebras: (i) the simple affine VOA associated to a simple Lie algebra with positive integral level; (ii) the Virasoro VOA corresponding to minimal mode ls; (iii) the lattice VOA associated to a positive definite even lattice. We prove that in all these cases, the first cohomology $H^1(V, W)$ are given by the zero-mode derivations when $W$ is any $V$-module with an $N$-grading (not necessarily by the operator $L(0)$). This agrees with the conjecture made by Yi-Zhi Huang and the author in 2018. For negative energy representations of Virasoro VOA, the same conclusion holds when $W$ is $L(0)$-graded with lowest weight greater or equal to $-3$. Relationship between the first cohomology of the VOA and that of the associated Zhus algebra is also discussed.
In this paper, we study a notion of what we call vertex Leibniz algebra. This notion naturally extends that of vertex algebra without vacuum, which was previously introduced by Huang and Lepowsky. We show that every vertex algebra without vacuum can be naturally extended to a vertex algebra. On the other hand, we show that a vertex Leibniz algebra can be embedded into a vertex algebra if and only if it admits a faithful module. To each vertex Leibniz algebra we associate a vertex algebra without vacuum which is universal to the forgetful functor. Furthermore, from any Leibniz algebra $g$ we construct a vertex Leibniz algebra $V_{g}$ and show that $V_{g}$ can be embedded into a vertex algebra if and only if $g$ is a Lie algebra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا