ترغب بنشر مسار تعليمي؟ اضغط هنا

First cohomologies of affine, Virasoro and lattice vertex operator algebras

128   0   0.0 ( 0 )
 نشر من قبل Fei Qi
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Fei Qi




اسأل ChatGPT حول البحث

In this paper we study the first cohomologies for the following three examples of vertex operator algebras: (i) the simple affine VOA associated to a simple Lie algebra with positive integral level; (ii) the Virasoro VOA corresponding to minimal models; (iii) the lattice VOA associated to a positive definite even lattice. We prove that in all these cases, the first cohomology $H^1(V, W)$ are given by the zero-mode derivations when $W$ is any $V$-module with an $N$-grading (not necessarily by the operator $L(0)$). This agrees with the conjecture made by Yi-Zhi Huang and the author in 2018. For negative energy representations of Virasoro VOA, the same conclusion holds when $W$ is $L(0)$-graded with lowest weight greater or equal to $-3$. Relationship between the first cohomology of the VOA and that of the associated Zhus algebra is also discussed.



قيم البحث

اقرأ أيضاً

In this paper, we study Virasoro vertex algebras and affine vertex algebras over a general field of characteristic $p>2$. More specifically, we study certain quotients of the universal Virasoro and affine vertex algebras by ideals related to the $p$- centers of the Virasoro algebra and affine Lie algebras. Among the main results, we classify their irreducible $mathbb{N}$-graded modules by explicitly determining their Zhu algebras and show that these vertex algebras have only finitely many irreducible $mathbb{N}$-graded modules and they are $C_2$-cofinite.
In this paper, we study a certain deformation $D$ of the Virasoro algebra that was introduced and called $q$-Virasoro algebra by Nigro,in the context of vertex algebras. Among the main results, we prove that for any complex number $ell$, the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of quasi modules for a certain vertex algebra of affine type. We also prove that the category of restricted $D$-modules of level $ell$ is canonically isomorphic to the category of $mathbb{Z}$-equivariant $phi$-coordinated quasi modules for the same vertex algebra. In the process, we introduce and employ a certain infinite dimensional Lie algebra which is defined in terms of generators and relations and then identified explicitly with a subalgebra of $mathfrak{gl}_{infty}$.
83 - Alex J. Feingold 2002
This is an expository introduction to fusion rules for affine Kac-Moody algebras, with major focus on the algorithmic aspects of their computation and the relationship with tensor product decompositions. Many explicit examples are included with figur es illustrating the rank 2 cases. New results relating fusion coefficients to tensor product coefficients are proved, and a conjecture is given which shows that the Frenkel-Zhu affine fusion rule theorem can be seen as a beautiful generalization of the Parasarathy-Ranga Rao-Varadarajan tensor product theorem. Previous work of the author and collaborators on a different approach to fusion rules from elementary group theory is also explained.
We investigate the large $N$ limit of permutation orbifolds of vertex operator algebras. To this end, we introduce the notion of nested oligomorphic permutation orbifolds and discuss under which conditions their fixed point VOAs converge. We show tha t if this limit exists, then it has the structure of a vertex algebra. Finally, we give an example based on $mathrm{GL}(N,q)$ for which the fixed point VOA limit is also the limit of the full permutation orbifold VOA.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert ex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and $phi$-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of irreducible modules for the variant Lie algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا