ترغب بنشر مسار تعليمي؟ اضغط هنا

On dual description of the deformed $O(N)$ sigma model

78   0   0.0 ( 0 )
 نشر من قبل Alexey Litvinov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study dual strong coupling description of integrability-preserving deformation of the $O(N)$ sigma model. Dual theory is described by a coupled theory of Dirac fermions with four-fermion interaction and bosonic fields with exponential interactions. We claim that both theories share the same integrable structure and coincide as quantum field theories. We construct a solution of Ricci flow equation which behaves in the UV as a free theory perturbed by graviton operators and show that it coincides with the metric of the $eta-$deformed $O(N)$ sigma-model after $T-$duality transformation.



قيم البحث

اقرأ أيضاً

Using methods of formal geometry, the Poisson sigma model on a closed surface is studied in perturbation theory. The effective action, as a function on vacua, is shown to have no quantum corrections if the surface is a torus or if the Poisson structu re is regular and unimodular (e.g., symplectic). In the case of a Kahler structure or of a trivial Poisson structure, the partition function on the torus is shown to be the Euler characteristic of the target; some evidence is given for this to happen more generally. The methods of formal geometry introduced in this paper might be applicable to other sigma models, at least of the AKSZ type.
In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) duality rotations exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).
We discuss the A-model as a gauge fixing of the Poisson Sigma Model with target a symplectic structure. We complete the discussion in [arXiv:0706.3164], where a gauge fixing defined by a compatible complex structure was introduced, by showing how to recover the A-model hierarchy of observables in terms of the AKSZ observables. Moreover, we discuss the off-shell supersymmetry of the A-model as a residual BV symmetry of the gauge-fixed PSM action.
We compute the OPE coefficients of the bosonic tensor model of cite{Benedetti:2019eyl} for three point functions with two fields and a bilinear with zero and non-zero spin. We find that all the OPE coefficients are real in the case of an imaginary te trahedral coupling constant, while one of them is not real in the case of a real coupling. We also discuss the operator spectrum of the free theory based on the character decomposition of the partition function.
The maximal extension of supersymmetric Chern-Simons theory coupled to fundamental matter has $mathcal{N} = 3$ supersymmetry. In this short note, we provide the explicit form of the action for the mass-deformed $mathcal{N} = 3$ supersymmetric $U(N)$ Chern-Simons-Matter theory. The theory admits a unique triplet mass deformation term consistent with supersymmetry. We explicitly construct the mass-deformed $mathcal{N} = 3$ theory in $mathcal{N} = 1$ superspace using a fundamental and an anti-fundamental superfield.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا