ﻻ يوجد ملخص باللغة العربية
Recent generalization of the coevolving voter model (J. Toruniewska et al, PRE 96 (2017) 042306) is further generalized here, including spin-dependent probability of rewiring. Mean field results indicate that either the system splits into two separate networks with different spins, or one of spin orientation goes extinct. In both cases, the density of active links is equal to zero. The results are discussed in terms of homophily in social contacts.
We consider the process of reaching the final state in the coevolving voter model. There is a coevolution of state dynamics, where a node can copy a state from a random neighbor with probabilty $1-p$ and link dynamics, where a node can re-wire its li
We introduce a non-linear variant of the voter model, the q-voter model, in which q neighbors (with possible repetition) are consulted for a voter to change opinion. If the q neighbors agree, the voter takes their opinion; if they do not have an unan
The voter model has been studied extensively as a paradigmatic opinion dynamics model. However, its ability for modeling real opinion dynamics has not been addressed. We introduce a noisy voter model (accounting for social influence) with agents recu
We investigate different opinion formation models on adaptive network topologies. Depending on the dynamical process, rewiring can either (i) lead to the elimination of interactions between agents in different states, and accelerate the convergence t
The voter model with memory-dependent dynamics is theoretically and numerically studied at the mean-field level. The `internal age, or time an individual spends holding the same state, is added to the set of binary states of the population, such that