ترغب بنشر مسار تعليمي؟ اضغط هنا

The search for high-mass protostars with ALMA revealed up to kilo-parsec scales (SPARKS): I. Indication for a centrifugal barrier in the environment of a single high-mass envelope

58   0   0.0 ( 0 )
 نشر من قبل Timea Csengeri Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The formation of the most massive O-type stars is poorly understood. We present a case study of a young massive clump from the ATLASGAL survey, G328.2551-0.5321. It exhibits a bolometric luminosity of 1.3$times$10$^4$ L$_{odot}$ corresponding to a current protostellar mass of $sim$11 and 16 M$_{odot}$. We analyze high angular-resolution observations with ALMA at $sim$0.17 corresponding a physical scale of $sim$400 au in dust continuum and molecular lines. The dust continuum emission reveals a single high-mass protostellar envelope and shows evidence for a marginally resolved continuum source. We detect a rotational line of CH$_3$OH within its $v_{rm t}$=1 torsionally excited state revealing two bright peaks of emission spatially offset from the dust continuum peak, and exhibiting a distinct velocity component $pm$4.5 km s$^{-1}$ offset compared to the source $v_{rm lsr}$. Local thermodynamic equilibrium analysis suggests N(CH$_3$OH)=1.2$-$2$times$10$^{19}$ cm$^{-2}$, and kinetic temperatures of 160$-$200 K at the position of these peaks. Their velocity shifts correspond well to the expected Keplerian velocity around a central object with 15M$_{odot}$ consistent with the mass estimate based on the sources bolometric luminosity. We propose a picture where the CH$_3$OH emission peaks trace the accretion shocks around the centrifugal barrier, pinpointing the interaction region between the collapsing envelope and an accretion disk. Because the HC$_3$N $v_{rm 7}$=1e ($J$=38-37) line shows compact emission, and a velocity pattern consistent with models of Keplerian rotation, we suggest that this could be a new tracer for compact accretion disks around high-mass protostars. The estimated physical properties of the accretion disk suggest a specific angular momentum several times larger than typically observed towards low-mass protostars.

قيم البحث

اقرأ أيضاً

The origin of massive stars is a fundamental open issue in modern astrophysics. Pre-ALMA interferometric studies reveal precursors to early B to late O type stars with collapsing envelopes of 15-20 M$_odot$ on 1000-3000 AU size-scales. To search for more massive envelopes we selected the most massive nearby young clumps from the ATLASGAL survey to study their protostellar content with ALMA. Our first results using the intermediate scales revealed by the ALMA ACA array providing 3-5 angular resolution, corresponding to $sim$0.05-0.1 pc size-scales, reveals a sample of compact objects. These massive dense cores are on average two-times more massive than previous studies of similar types of objects. We expect that once the full survey is completed, it will provide a comprehensive view on the origin of the most massive stars.
(Abridged) The initial physical conditions of high-mass stars and protoclusters remain poorly characterized. To this end we present the first targeted ALMA 1.3mm continuum and spectral line survey towards high-mass starless clump candidates, selectin g a sample of 12 of the most massive candidates ($400-4000, M_odot$) within 5 kpc. The joint 12+7m array maps have a high spatial resolution of $sim 3000, mathrm{au}$ ($sim 0.8^{primeprime}$) and have point source mass-completeness down to $sim 0.3, M_odot$ at $6sigma$ (or $1sigma$ column density sensitivity of $1.1times10^{22}, mathrm{cm^{-2}}$). We discover previously undetected signposts of low-luminosity star formation from CO (2-1) and SiO (5-4) bipolar outflows and other signatures towards 11 out of 12 clumps, showing that current MIR/FIR Galactic Plane surveys are incomplete to low- and intermediate-mass protostars ($lesssim 50, L_odot$). We compare a subset of the observed cores with a suite of radiative transfer models of starless cores. We find a high-mass starless core candidate with a model-derived mass consistent with $29^{52}_{15}, M_odot$ when integrated over size scales of $2times10^4, mathrm{au}$. Unresolved cores are poorly fit by starless core models, supporting the interpretation that they are protostellar even without detection of outflows. Substantial fragmentation is observed towards 10 out of 12 clumps. We extract sources from the maps using a dendrogram to study the characteristic fragmentation length scale. Nearest neighbor separations when corrected for projection are consistent with being equal to the clump average thermal Jeans length. Our findings support a hierarchical fragmentation process, where the highest density regions are not strongly supported against thermal gravitational fragmentation by turbulence or magnetic fields.
We study the fragmentation of the nearest high line-mass filament, the integral shaped filament (ISF, line-mass $sim$ 400 M$_odot$ pc$^{-1}$) in the Orion A molecular cloud. We have observed a 1.6 pc long section of the ISF with the Atacama Large Mil limetre/submillimeter Array (ALMA) at 3 mm continuum emission, at a resolution of $sim$3 (1 200 AU). We identify from the region 43 dense cores with masses about a solar mass. 60% of the ALMA cores are protostellar and 40% are starless. The nearest neighbour separations of the cores do not show a preferred fragmentation scale; the frequency of short separations increases down to 1 200 AU. We apply a two-point correlation analysis on the dense core separations and show that the ALMA cores are significantly grouped at separations below $sim$17 000 AU and strongly grouped below $sim$6 000 AU. The protostellar and starless cores are grouped differently: only the starless cores group strongly below $sim$6 000 AU. In addition, the spatial distribution of the cores indicates periodic grouping of the cores into groups of $sim$30 000 AU in size, separated by $sim$50 000 AU. The groups coincide with dust column density peaks detected by Herschel. These results show hierarchical, two-mode fragmentation in which the maternal filament periodically fragments into groups of dense cores. Critically, our results indicate that the fragmentation models for lower line-mass filaments ($sim$ 16 M$_odot$ pc$^{-1}$) fail to capture the observed properties of the ISF. We also find that the protostars identified with Spitzer and Herschel in the ISF are grouped at separations below $sim$17 000 AU. In contrast, young stars with disks do not show significant grouping. This suggests that the grouping of dense cores is partially retained over the protostar lifetime, but not over the lifetime of stars with disks.
We present $sim10-40,mu$m SOFIA-FORCAST images of 14 intermediate-mass protostar candidates as part of the SOFIA Massive (SOMA) Star Formation Survey. We build spectral energy distributions (SEDs), also utilizing archival Spitzer, Herschel and IRAS d ata. We then fit the SEDs with radiative transfer (RT) models of Zhang & Tan (2018), based on Turbulent Core Accretion theory, to estimate key protostellar properties. With the addition of these intermediate-mass sources, SOMA protostars span luminosities from $sim10^{2}-10^{6}:L_{odot}$, current protostellar masses from $sim0.5-30:M_{odot}$ and ambient clump mass surface densities, $Sigma_{rm cl}$ from $0.1-3:{rm{g:cm}^{-2}}$. A wide range of evolutionary states of the individual protostars and of the protocluster environments are also probed. We have also considered about 50 protostars identified in Infrared Dark Clouds and expected to be at the earliest stages of their evolution. With this global sample, most of the evolutionary stages of high- and intermediate-mass protostars are probed. From the best fitting models, there is no evidence of a threshold value of protocluster clump mass surface density being needed to form protostars up to $sim25:M_odot$. However, to form more massive protostars, there is tentative evidence that $Sigma_{rm{cl}}$ needs to be $gtrsim1:{rm{g,cm}}^{-2}$. We discuss how this is consistent with expectations from core accretion models that include internal feedback from the forming massive star.
We aim to reveal the gas energetics in the circumstellar environment of the prototypical high-mass protostellar object AFGL2591 using space-based far-infrared observations of linear rotor molecules. Rotational spectral line signatures of CO, HCO+, CS, HCN and HNC from a 490-1240 GHz survey with Herschel/HIFI, complemented by ground-based JCMT and IRAM 30m spectra, cover transitions with E(up)/k between 5 and ~300 K (750K for 12C16O, using selected frequency settings up to 1850 GHz). The resolved spectral line profiles are used to separate and study various kinematic components. The line profiles show two emission components, the widest and bluest of which is attributed to an approaching outflow and the other to the envelope. We find evidence for progressively more redshifted and wider line profiles from the envelope gas with increasing energy level, qualitatively explained by residual outflow contribution picked up in the systematically decreasing beam size. Integrated line intensities for each species decrease as E(up)/k increases from <50 to 700K. We constrain the following: n(H2)~10^5-10^6 cm^-3 and T~60-200K for the outflow gas; T=9-17K and N(H2)~3x10^21 cm^-2 for a known foreground absorption cloud; N(H2)<10^19 cm^-2 for a second foreground component. Our spherical envelope radiative transfer model systematically underproduces observed line emission at E(up)/k > 150 K for all species. This indicates that warm gas should be added to the model and that the models geometry should provide low optical depth pathways for line emission from this warm gas to escape, for example in the form of UV heated outflow cavity walls viewed at a favorable inclination angle. Physical and chemical conditions derived for the outflow gas are similar to those in the protostellar envelope, possibly indicating that the modest velocity (<10 km/s) outflow component consists of recently swept-up gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا