ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon-graviton scattering: A new way to detect anisotropic gravitational waves?

370   0   0.0 ( 0 )
 نشر من قبل Giorgio Orlando
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitons are the quantum counterparts of gravitational waves in low-energy theories of gravity. Using Feynman rules one can compute scattering amplitudes describing the interaction between gravitons and other fields. Here, we consider the interaction between gravitons and photons. Using the quantum Boltzmann equation formalism, we derive fully general equations describing the radiation transfer of photon polarization, due to the forward scattering with gravitons. We show that the Q and U photon linear polarization modes couple with the V photon circular polarization mode, if gravitons have anisotropies in their power-spectrum statistics. As an example, we apply our results to the case of primordial gravitons, considering models of inflation where an anisotropic primordial graviton distribution is produced. Finally, we evaluate the effect on cosmic microwave background (CMB) polarization, showing that in general the expected effects on the observable CMB frequencies are very small. However, our result is promising, since it could provide a novel tool for detecting anisotropic backgrounds of gravitational waves, as well as for getting further insight on the physics of gravitational waves.



قيم البحث

اقرأ أيضاً

A novel method for extending frequency frontier in gravitational wave observations is proposed. It is shown that gravitational waves can excite a magnon. Thus, gravitational waves can be probed by a graviton-magnon detector which measures resonance f luorescence of magnons. Searching for gravitational waves with a wave length $lambda$ by using a ferromagnetic sample with a dimension $l$, the sensitivity of the graviton-magnon detector reaches spectral densities, around $5.4 times 10^{-22} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 14 GHz and $8.6 times 10^{-21} times (frac{l}{lambda /2pi})^{-2} [{rm Hz}^{-1/2}]$ at 8.2 GHz, respectively.
In this work, we present the first experimental upper limits on the presence of stochastic ultra-high-frequency gravitational waves. We exclude gravitational waves in the frequency bands from $(2.7 - 14)times10^{14}~$Hz and $(5 - 12)times10^{18}~$Hz down to a characteristic amplitude of $h_c^{rm min}approx6times 10^{-26}$ and $h_c^{rm min}approx 5times 10^{-28}$ at $95~$% confidence level, respectively. To obtain these results, we used data from existing facilities that have been constructed and operated with the aim of detecting WISPs (Weakly Interacting Slim Particles), pointing out that these facilities are also sensitive to gravitational waves by graviton to photon conversion in the presence of a magnetic field. The principle applies to all experiments of this kind, with prospects of constraining (or detecting), for example, gravitational waves from light primordial black hole evaporation in the early universe.
We consider a generic dispersive massive gravity theory and numerically study its resulting modified energy and strain spectra of tensor gravitational waves (GWs) sourced by (i) fully developed turbulence during the electroweak phase transition (EWPT ) and (ii) forced hydromagnetic turbulence during the QCD phase transition (QCDPT). The GW spectra are then computed in both spatial and temporal Fourier domains. We find, from the spatial spectra, that the slope modifications are weakly dependent on the eddy size at QCDPT, and, from the temporal spectra, that the modifications are pronounced in the $1$--$10{rm nHz}$ range -- the sensitivity range of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) -- for a graviton mass $m_{rm g}$ in the range $2times10^{-23}{rm eV}lesssim m_{rm g}c^2lesssim7times10^{-22}{rm eV}$.
With the observational advance in recent years, primordial gravitational waves (GWs), known as the tensor-mode cosmic perturbations, in the Loop Quantum Cosmology (LQC) are becoming testable and thus require better framework through which to bridge b etween the observations and the theories. In this work we present a new formalism that employs the transfer functions to bring the GWs from any epoch, even before the quantum bounce, to a later time, including the present. The evolutionary epochs considered here include the possible deflation, quantum bounce, and inflation. This formalism enables us to predict more accurately the GW power spectrum today. With the ADM formalism for the LQC background dynamics, our approach is equivalent to the commonly used Bogoliubov transformations for evolving the primordial GWs, but more transparent for discussions and easier to calculate due to its nature of being linear algebra dealing with linear perturbations. We utilize this advantage to have resolved the IR suppression problem. We also propose the field-free approximation for the effective mass in the quantum bounce epoch to largely improve the accuracy in the predicted GW power spectrum. Our transfer-function formalism is general in dealing with any linear problems, and thus expected to be equally useful under other context with linearity.
We propose a new strategy to search for dark matter axions in the mass range of 40--400 $mu$eV by introducing dielectric haloscopes, which consist of dielectric disks placed in a magnetic field. The changing dielectric media cause discontinuities in the axion-induced electric field, leading to the generation of propagating electromagnetic waves to satisfy the continuity requirements at the interfaces. Large-area disks with adjustable distances boost the microwave signal (10--100 GHz) to an observable level and allow one to scan over a broad axion mass range. A sensitivity to QCD axion models is conceivable with 80 disks of 1 m$^2$ area contained in a $10$ Tesla field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا