ﻻ يوجد ملخص باللغة العربية
We unify and consolidate various results about non-signall-ing games, a subclass of non-local two-player one-round games, by introducing and studying several new families of games and establishing general theorems about them, which extend a number of known facts in a variety of special cases. Among these families are {it reflexive games,} which are characterised as the hardest non-signalling games that can be won using a given set of strategies. We introduce {it imitation games,} in which the players display linked behaviour, and which contains as subclasses the classes of variable assignment games, binary constraint system games, synchronous games, many games based on graphs, and {it unique} games. We associate a C*-algebra $C^*(mathcal{G})$ to any imitation game $mathcal{G}$, and show that the existence of perfect quantum commuting (resp. quantum, local) strategies of $mathcal{G}$ can be characterised in terms of properties of this C*-algebra, extending known results about synchronous games. We single out a subclass of imitation games, which we call {it mirror games,} and provide a characterisation of their quantum commuting strategies that has an algebraic flavour, showing in addition that their approximately quantum perfect strategies arise from amenable traces on the encoding C*-algebra. We describe the main classes of non-signalling correlations in terms of states on operator system tensor products.
Linear system games are a generalization of Mermins magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solu
We prove that optimal strategies exist in every perfect-information stochastic game with finitely many states and actions and a tail winning condition.
This article extends the idea of solving parity games by strategy iteration to non-deterministic strategies: In a non-deterministic strategy a player restricts himself to some non-empty subset of possible actions at a given node, instead of limiting
We examine the problem of the existence of optimal deterministic stationary strategiesintwo-players antagonistic (zero-sum) perfect information stochastic games with finitely many states and actions.We show that the existenceof such strategies follow
Pure state of a physical system can be prepared in an infinite number of ways. Here, we prove that given a pure state of a quantum system it is impossible to distinguish two preparation procedures. Further, we show that if we can distinguish two prep