ﻻ يوجد ملخص باللغة العربية
We examine the problem of the existence of optimal deterministic stationary strategiesintwo-players antagonistic (zero-sum) perfect information stochastic games with finitely many states and actions.We show that the existenceof such strategies follows from the existence of optimal deterministic stationarystrategies for some derived one-player games.Thus we reducethe problem from two-player to one-player games (Markov decisionproblems), where usually it is much easier to tackle.The reduction is very general, it holds not only for all possible payoff mappings but alsoin more a general situations whereplayers preferences are not expressed by payoffs.
We prove that optimal strategies exist in every perfect-information stochastic game with finitely many states and actions and a tail winning condition.
We consider extensive games with perfect information with well-founded game trees and study the problems of existence and of characterization of the sets of subgame perfect equilibria in these games. We also provide such characterizations for two cla
We examine perfect information stochastic mean-payoff games - a class of games containing as special sub-classes the usual mean-payoff games and parity games. We show that deterministic memoryless strategies that are optimal for discounted games with
We consider a new setting of facility location games with ordinal preferences. In such a setting, we have a set of agents and a set of facilities. Each agent is located on a line and has an ordinal preference over the facilities. Our goal is to desig
We motivate and propose a new model for non-cooperative Markov game which considers the interactions of risk-aware players. This model characterizes the time-consistent dynamic risk from both stochastic state transitions (inherent to the game) and ra