ترغب بنشر مسار تعليمي؟ اضغط هنا

Ultrafast destruction and recovery of the spin density wave order in iron based pnictides: a multi-pulse optical study

189   0   0.0 ( 0 )
 نشر من قبل Tomaz Mertelj
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Naseska




اسأل ChatGPT حول البحث

We report on systematic excitation-density dependent all-optical femtosecond time resolved study of the spin-density wave state in iron-based superconductors. The destruction and recovery dynamics are measured by means of the standard and a multi-pulse pump-probe technique. The experimental data are analyzed and interpreted in the framework of an extended three temperature model. The analysis suggests that the optical-phonons energy-relaxation plays an important role in the recovery of almost exclusively electronically driven spin density wave order.



قيم البحث

اقرأ أيضاً

We investigate the impurity scattering induced quasiparticle interference in the ($pi, 0$) spin-density wave phase of the iron pnictides. We use a five orbital tight binding model and our mean field theory in the clean limit captures key features of the Fermi surface observed in angle-resolved photoemission. We use a t-matrix formalism to incorporate the effect of doping induced impurities on this state. The impurities lead to a spatial modulation of the local density of states about the impurity site, with a periodicity of $sim 8a_{{rm Fe}-{rm Fe}}$ along the antiferromagnetic direction. The associated momentum space quasiparticle interference pattern is anisotropic, with major peaks located at $sim (pm pi/4,0)$, consistent with spectroscopic imaging scanning tunneling microscopy. We trace the origin of this pattern to an elliptical contour of constant energy around momentum (0,0), with major axis oriented along the (0,1) direction, in the mean field electronic structure.
We investigate the spin-wave excitations in the spin-density wave state of doped iron pnictides within a five-orbital model. We find that the excitations along ($pi, 0$)$rightarrow$($pi, pi$) are very sensitive to the doping whereas they do not exhib it a similar sensitivity along ($0, 0$) $rightarrow$ ($pi, 0$). Secondly, anisotropy in the excitations around ($pi, 0$) with an elliptical shape grows on moving towards the hole-doped region for low energy, whereas it decreases for the high-energy excitations on the contrary. Thirdly, spin-wave spectral weight shifts towards the low-energy region on moving away from zero doping. We find these features to be in qualitative agreement with the inelastic neutron-scattering measurements for the doped pnictides.
We investigate multi-band Hubbard models for the three iron 3$d$-$t_{2g}$ bands and the two iron 3$d$-$e_g$ bands in ${rm La O Fe As}$ by means of the Gutzwiller variational theory. Our analysis of the paramagnetic ground state shows that neither Har tree--Fock mean-field theories nor effective spin models describe these systems adequately. In contrast to Hartree--Fock-type approaches, the Gutzwiller theory predicts that antiferromagnetic order requires substantial values of the local Hunds-rule exchange interaction. For the three-band model, the antiferromagnetic moment fits experimental data for a broad range of interaction parameters. However, for the more appropriate five-band model, the iron $e_g$ electrons polarize the $t_{2g}$ electrons and they substantially contribute to the ordered moment.
We investigate the quasiparticle relaxation and low-energy electronic structure in undoped SrFe_2As_2 exhibiting spin-density wave (SDW) ordering using optical pump-probe femtosecond spectroscopy. A remarkable critical slowing down of the quasipartic le relaxation dynamics at the SDW transition temperature T_SDW = 200K is observed. From temperature dependence of the transient reflectivity amplitude we determine the SDW-state charge gap magnitude, 2Delta_SDW/k_BT_SDW=7.2+-1. The second moment of the Eliashberg function, lambda<(hbar omega)^2>=110+-10meV^2, determined from the relaxation time above T_SDW, is similar to SmFeAsO and BaFe_2As_2 indicating a rather small electron phonon coupling constant unless the electron-phonon spectral function (alpha^2F(omega) is strongly enhanced in the low-energy phonon region.
132 - G. Lang , H.-J. Grafe , D. Paar 2009
The charge distribution in RFeAsO$_{1-x}$F$_x$ (R=La, Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally-doped or overdoped compounds feature a single charge environment, two charge environments are dete cted in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا