ترغب بنشر مسار تعليمي؟ اضغط هنا

Antiferromagnetic order in multi-band Hubbard models for iron-pnictides

109   0   0.0 ( 0 )
 نشر من قبل Florian Gebhard
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate multi-band Hubbard models for the three iron 3$d$-$t_{2g}$ bands and the two iron 3$d$-$e_g$ bands in ${rm La O Fe As}$ by means of the Gutzwiller variational theory. Our analysis of the paramagnetic ground state shows that neither Hartree--Fock mean-field theories nor effective spin models describe these systems adequately. In contrast to Hartree--Fock-type approaches, the Gutzwiller theory predicts that antiferromagnetic order requires substantial values of the local Hunds-rule exchange interaction. For the three-band model, the antiferromagnetic moment fits experimental data for a broad range of interaction parameters. However, for the more appropriate five-band model, the iron $e_g$ electrons polarize the $t_{2g}$ electrons and they substantially contribute to the ordered moment.



قيم البحث

اقرأ أيضاً

137 - Tobias Schickling 2013
In this work I investigate a two-band Hubbard model using the Gutzwiller wavefunction. The tight-binding part of the model was constructed to have a gapless spin-density wave state which leads to Dirac points in the bandstructure, a common feature of many iron-pnictide compounds. For quarter, half and three-quarter fillings I show that the Hunds rule coupling has a large impact on the metal-insulator transition in the paramagnetic phase. For the half-filled model in the antiferromagnetic phase, the magnetism evolves in a Stoner-like behavior and the size of the ordered moment is mainly determined by the Hubbard interaction. As the Hunds coupling plays a minor role in this state, the model does not describe a Hunds metal which is in contrast to more realistic models for iron-pnictide compounds.
125 - G. Lang , H.-J. Grafe , D. Paar 2009
The charge distribution in RFeAsO$_{1-x}$F$_x$ (R=La, Sm) iron pnictides is probed using As nuclear quadrupole resonance. Whereas undoped and optimally-doped or overdoped compounds feature a single charge environment, two charge environments are dete cted in the underdoped region. Spin-lattice relaxation measurements show their coexistence at the nanoscale. Together with the quantitative variations of the spectra with doping, they point to a local electronic order in the iron layers, where low- and high-doping-like regions would coexist. Implications for the interplay of static magnetism and superconductivity are discussed.
Although the parent iron-based pnictides and chalcogenides are itinerant antiferromagnets, the use of local moment picture to understand their magnetic properties is still widespread. We study magnetic Raman scattering from a local moment perspective for various quantum spin models proposed for this new class of superconductors. These models vary greatly in the level of magnetic frustration and show a vastly different two-magnon Raman response. Light scattering by two-magnon excitations thus provides a robust and independent measure of the underlying spin interactions. In accord with other recent experiments, our results indicate that the amount of magnetic frustration in these systems may be small.
In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electrons kinetic energy leading to remarkable experimental man ifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.
188 - M. Naseska 2018
We report on systematic excitation-density dependent all-optical femtosecond time resolved study of the spin-density wave state in iron-based superconductors. The destruction and recovery dynamics are measured by means of the standard and a multi-pul se pump-probe technique. The experimental data are analyzed and interpreted in the framework of an extended three temperature model. The analysis suggests that the optical-phonons energy-relaxation plays an important role in the recovery of almost exclusively electronically driven spin density wave order.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا