ترغب بنشر مسار تعليمي؟ اضغط هنا

N=1 QED in 2+1 dimensions: Dualities and enhanced symmetries

108   0   0.0 ( 0 )
 نشر من قبل Sergio Benvenuti
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider three-dimensional sQED with 2 flavors and minimal supersymmetry. We discuss various models which are dual to Gross-Neveu-Yukawa theories. The $U(2)$ ultraviolet global symmetry is often enhanced in the infrared, for instance to $O(4)$ or $SU(3)$. This is analogous to the conjectured behaviour of non-supersymmetric QED with 2 flavors. A perturbative analysis of the Gross-Neveu-Yukawa models in the $D = 4 - varepsilon$ expansion shows that the $U(2)$ preserving superpotential deformations of the sQED (modulo tuning mass terms to zero) are irrelevant, so the fixed points with enhanced symmetry are stable. We also construct an example of $mathcal{N} = 2$ sQED with 4 flavors that exhibits enhanced $SO(6)$ symmetry.



قيم البحث

اقرأ أيضاً

We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe atures both with 3d bosonization and with 4d Seiberg duality. We provide a few consistency checks of the proposal, mapping the structure of vacua and performing perturbative computations in the $varepsilon$-expansion.
We consider Quantum Electrodynamics with an even number $N_f$ of bosonic or fermionic flavors, allowing for interactions respecting at least $U(N_f/2)^2$ global symmetry. Both in the bosonic and in the fermionic case, we find four interacting fixed p oints: two with $U(N_f/2)^2$ symmetry, two with $U(N_f)$ symmetry. Large $N_f$ arguments suggest that, lowering $N_f$, all these fixed points merge pairwise and become complex CFTs. In the bosonic QEDs the merging happens around $N_fsim 9{-}11$ and does not break the global symmetry. In the fermionic QEDs the merging happens around $N_fsim3{-}7$ and breaks $U(N_f)$ to $U(N_f/2)^2$. When $N_f=2$, we show that all four bosonic fixed points are one-to-one dual to the fermionic fixed points. The merging pattern suggested at large $N_f$ is consistent with the four $N_f=2$ boson $lra$ fermion dualities, providing support to the validity of the scenario.
Lagrangians for several new off-shell 4D, N = 1 supersymmetric descriptions of massive superspin-1 and superspin-3/2 multiplets are described. Taken together with the models previously constructed, there are now four off-shell formulations for the ma ssive gravitino multiplet (superspin-1) and six off-shell formulations for the massive graviton multiplet (superspin-3/2). Duality transformations are derived which relate some of these dynamical systems.
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1 -loop superpotential, we find a universal form for the phase diagrams of many such gauge theories, which is proven to persist to all orders in perturbation theory using a symmetry argument. This allows us to conjecture new dualities for N=1 gauge theories with fundamental matter. We also show that these dualities are related to results in N=2 supersymmetric gauge theories, which provides further evidence for them.
The problem of fermions in 1+1 dimensions in the presence of a pseudoscalar Coulomb potential plus a mixing of vector and scalar Coulomb potentials which have equal or opposite signs is investigated. We explore all the possible signs of the potential s and discuss their bound-state solutions for fermions and antifermions. We show the relation between spin and pseudospin symmetries by means of charge-conjugation and $gamma^{5}$ chiral transformations. The cases of pure pseudoscalar and mixed vector-scalar potentials, already analyzed in previous works, are obtained as particular cases. The results presented can be extended to 3+1 dimensions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا