ﻻ يوجد ملخص باللغة العربية
We study gauge theories with N=1 supersymmetry in 2+1 dimensions. We start by calculating the 1-loop effective superpotential for matter in an arbitrary representation. We then restrict ourselves to gauge theories with fundamental matter. Using the 1-loop superpotential, we find a universal form for the phase diagrams of many such gauge theories, which is proven to persist to all orders in perturbation theory using a symmetry argument. This allows us to conjecture new dualities for N=1 gauge theories with fundamental matter. We also show that these dualities are related to results in N=2 supersymmetric gauge theories, which provides further evidence for them.
We study dualities for 3d $mathcal{N} = 2$ $SU(N_c)$ SQCD at Chern-Simons level $k$ in presence of an adjoint with polynomial superpotential. The dualities are dubbed chiral because there is a different amount of fundamentals $N_f$ and antifundamenta
Recently a very interesting three-dimensional $mathcal{N}=2$ supersymmetric theory with $SU(3)$ global symmetry was discussed by several authors. We denote this model by $T_x$. This was conjectured to have two dual descriptions, one with explicit sup
Seiberg-like dualities in $2+1$d quiver gauge theories with $4$ supercharges are investigated. We consider quivers made of various combinations of classical gauge groups $U(N)$, $Sp(N)$, $SO(N)$ and $SU(N)$. Our main focus is the mapping of the super
We consider minimally supersymmetric QCD in 2+1 dimensions, with Chern-Simons and superpotential interactions. We propose an infrared $SU(N) leftrightarrow U(k)$ duality involving gauge-singlet fields on one of the two sides. It shares qualitative fe
The relation between open topological strings and representation theory of symmetric quivers is explored beyond the original setting of the knot-quiver correspondence. Multiple cover generalizations of the skein relation for boundaries of holomorphic