ﻻ يوجد ملخص باللغة العربية
We report a neutron scattering study of the metallic triangular lattice antiferromagnet PdCrO$_2$. Powder neutron diffraction measurements confirm that the crystalline space group symmetry remains $Rbar{3}m$ below $T_N$. This implies that magnetic interactions consistent with the crystal symmetry do not stabilise the non-coplanar magnetic structure which was one of two structures previously proposed on the basis of single crystal neutron diffraction measurements. Inelastic neutron scattering measurements find two gaps at low energies which can be explained as arising from a dipolar-type exchange interaction. This symmetric anisotropic interaction also stabilises a magnetic structure very similar to the coplanar magnetic structure which was also suggested by the single crystal diffraction study. The higher energy magnon dispersion can be modelled by linear spin wave theory with exchange interactions up to sixth nearest-neighbors, but discrepancies remain which hint at additional effects unexplained by the linear theory.
CaV$_2$O$_4$ is a spin-1 antiferromagnet, where the magnetic vanadium ions are arranged on quasi-one-dimensional (1D) zig-zag chains with potentially frustrated antiferromagnetic exchange interactions. High temperature susceptibility and single-cryst
Compounds with two-dimensional (2D) layers of magnetic ions weakly connected by van der Waals bonding offer routes to enhance quantum behavior, stimulating both fundamental and applied interest. CrPS4 is one such magnetic van der Waals material, howe
We present an experimental investigation of the magnetic structure in a tetramer system SeCuO$_3$ using neutron diffraction and nuclear resonance techniques. We establish a non-collinear, commensurate antiferromagnetic ordering with a propagation vec
The origin of non-collinear magnetic order in UO$_{2}$ is studied by an ab initio dynamical-mean-field-theory framework in conjunction with a linear-response approach for evaluating inter-site superexchange interactions between U 5$f^{2}$ shells. The
We report the magnetic diffraction pattern and spin wave excitations in (CD$_3$)$_2$ND$_2$[Mn(DCO$_2$)$_3$] measured using elastic and inelastic neutron scattering. The magnetic structure is shown to be a G-type antiferromagnet with moments pointing