ترغب بنشر مسار تعليمي؟ اضغط هنا

Forwarding and Optical Indices in an All-Optical BCube Network

106   0   0.0 ( 0 )
 نشر من قبل Suzhen Wang
 تاريخ النشر 2018
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

BCube is a highly scalable and cost-effective networking topology, which has been widely applied to modular datacenters. Optical technologies based on Wavelength Division Multiplexing (WDM) are gaining popularity for Data Center Networks (DCNs) due to their technological strengths such as low communication latency, low power consumption, and high link bandwidth. Therefore, it is worth investigating optical techniques into the BCube architecture for future DCNs. For this purpose, we study the forwarding and optical indices in an all-optical BCube network. Consider an all-optical BCube network in which every host sets up a connection with every other host. The optical index is the minimum number of wavelengths required by the network to support such a host-to-host traffic, under the restriction that each connection is assigned a wavelength that remains constant in the network. A routing is a set of directed paths specified for all host pairs. By defining the maximum link load of a routing as the maximum number of paths passing through any link, the forwarding index is measured to be the minimum of maximum link load over all possible routings. The forwarding index turns out to be a natural lower bound of the optical index. In this paper, we first compute the forwarding index of an all-optical BCube network. Then, we derive an upper bound of the optical index by providing an oblivious routing and wavelength assignment (RWA) schemes, which attains the lower bound given by the forwarding index in some small cases. Finally, a tighter upper bound is obtained by means of the chromatic numbers in Graph Theory.

قيم البحث

اقرأ أيضاً

Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the imaging technique in the quantum settings, QST is born to be a data science problem, where machine learn ing techniques, noticeably neural networks, have been applied extensively. In this work, we build an integrated all-optical setup for neural network QST, based on an all-optical neural network (AONN). Our AONN is equipped with built-in nonlinear activation function, which is based on electromagnetically induced transparency. Experiment results demonstrate the validity and efficiency of the all-optical setup, indicating that AONN can mitigate the state-preparation-and-measurement error and predict the phase parameter in the quantum state accurately. Given that optical setups are highly desired for future quantum networks, our all-optical setup of integrated AONN-QST may shed light on replenishing the all-optical quantum network with the last brick.
122 - Ying Zuo , Bohan Li , Yujun Zhao 2019
Artificial neural networks (ANNs) have now been widely used for industry applications and also played more important roles in fundamental researches. Although most ANN hardware systems are electronically based, optical implementation is particularly attractive because of its intrinsic parallelism and low energy consumption. Here, we propose and demonstrate fully-functioned all optical neural networks (AONNs), in which linear operations are programmed by spatial light modulators and Fourier lenses, and optical nonlinear activation functions are realized with electromagnetically induced transparency in laser-cooled atoms. Moreover, all the errors from different optical neurons here are independent, thus the AONN could scale up to a larger system size with final error still maintaining in a similar level of a single neuron. We confirm its capability and feasibility in machine learning by successfully classifying the order and disorder phases of a typical statistic Ising model. The demonstrated AONN scheme can be used to construct various ANNs of different architectures with the intrinsic parallel computation at the speed of light.
Topological insulators are a class of electronic materials exhibiting robust edge states immune to perturbations and disorder. This concept has been successfully adapted in photonics, where topologically nontrivial waveguides and topological lasers w ere developed. However, the exploration of topological properties in a given photonic system is limited to a fabricated sample, without the flexibility to reconfigure the structure in-situ. Here, we demonstrate an all-optical realization of the orbital Su-Schrieffer-Heeger (SSH) model in a microcavity exciton-polariton system, whereby a cavity photon is hybridized with an exciton in a GaAs quantum well. We induce a zigzag potential for exciton polaritons all-optically, by shaping the nonresonant laser excitation, and measure directly the eigenspectrum and topological edge states of a polariton lattice in a nonlinear regime of bosonic condensation. Furthermore, taking advantage of the tunability of the optically induced lattice we modify the intersite tunneling to realize a topological phase transition to a trivial state. Our results open the way to study topological phase transitions on-demand in fully reconfigurable hybrid photonic systems that do not require sophisticated sample engineering.
We report on a stable optical trap suitable for a macroscopic mirror, wherein the dynamics of the mirror are fully dominated by radiation pressure. The technique employs two frequency-offset laser fields to simultaneously create a stiff optical resto ring force and a viscous optical damping force. We show how these forces may be used to optically trap a free mass without introducing thermal noise; and we demonstrate the technique experimentally with a 1 gram mirror. The observed optical spring has an inferred Youngs modulus of 1.2 TPa, 20% stiffer than diamond. The trap is intrinsically cold and reaches an effective temperature of 0.8 K, limited by technical noise in our apparatus.
319 - H.M. Wiseman , G.J. Milburn 2004
All-optical feedback can be effected by putting the output of a source cavity through a Faraday isolator and into a second cavity which is coupled to the source cavity by a nonlinear crystal. If the driven cavity is heavily damped, then it can be adi abatically eliminated and a master equation or quantum Langevin equation derived for the first cavity alone. This is done for an input bath in an arbitrary state, and for an arbitrary nonlinear coupling. If the intercavity coupling involves only the intensity (or one quadrature) of the driven cavity, then the effect on the source cavity is identical to that which can be obtained from electro-optical feedback using direct (or homodyne) detection. If the coupling involves both quadratures, this equivalence no longer holds, and a coupling linear in the source amplitude can produce a nonclassical state in the source cavity. The analogous electro-optic scheme using heterodyne detection introduces extra noise which prevents the production of nonclassical light. Unlike the electro-optic case, the all-optical feedback loop has an output beam (reflected from the second cavity). We show that this may be squeezed, even if the source cavity remains in a classical state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا