ترغب بنشر مسار تعليمي؟ اضغط هنا

All-optical versus electro-optical quantum-limited feedback

320   0   0.0 ( 0 )
 نشر من قبل Howard M. Wiseman
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

All-optical feedback can be effected by putting the output of a source cavity through a Faraday isolator and into a second cavity which is coupled to the source cavity by a nonlinear crystal. If the driven cavity is heavily damped, then it can be adiabatically eliminated and a master equation or quantum Langevin equation derived for the first cavity alone. This is done for an input bath in an arbitrary state, and for an arbitrary nonlinear coupling. If the intercavity coupling involves only the intensity (or one quadrature) of the driven cavity, then the effect on the source cavity is identical to that which can be obtained from electro-optical feedback using direct (or homodyne) detection. If the coupling involves both quadratures, this equivalence no longer holds, and a coupling linear in the source amplitude can produce a nonclassical state in the source cavity. The analogous electro-optic scheme using heterodyne detection introduces extra noise which prevents the production of nonclassical light. Unlike the electro-optic case, the all-optical feedback loop has an output beam (reflected from the second cavity). We show that this may be squeezed, even if the source cavity remains in a classical state.



قيم البحث

اقرأ أيضاً

Dense wavelength division multiplexing (DWDM) is one of the most successful methods for enhancing data transmission rates in both classical and quantum communication networks. Although signal multiplexing and demultiplexing are equally important, tra ditional multiplexing and demultiplexing methods are based on passive devices such as arrayed waveguides and fiber Bragg cascade filters, which, although widely used in commercial devices, lack any active tuning ability. In this work, we propose a signal demultiplexing method based on sum frequency generation (SFG) with two significant features: first, any signal from the common communication channel can be demultiplexed to a single user by switching the pump wavelength; second, a cheap high-performance detector can be used for signal detection. These two features were demonstrated by demultiplexing multi-channel energy-time entanglement generated by a micro-cavity silicon chip. High interference visibilities over three channels after demultiplexing showed that entanglement was preserved and verified the high performance of the demultiplexer, which will find wide application in high-capacity quantum communication networks.
Particle sensing in optical tweezers systems provides information on the position, velocity and force of the specimen particles. The conventional quadrant detection scheme is applied ubiquitously in optical tweezers experiments to quantify these para meters. In this paper we show that quadrant detection is non-optimal for particle sensing in optical tweezers and propose an alternative optimal particle sensing scheme based on spatial homodyne detection. A formalism for particle sensing in terms of transverse spatial modes is developed and numerical simulations of the efficacy of both quadrant and spatial homodyne detection are shown. We demonstrate that an order of magnitude improvement in particle sensing sensitivity can be achieved using spatial homodyne over quadrant detection.
An all-optical scheme for simulating non-Markovian evolution of a quantum system is proposed. It uses only linear optics elements and by controlling the system parameters allows one to control the presence or absence of information backflow from the environment. A sufficient and necessary condition for the non-Markovianity of our channel based on Gaussian inputs is proved. Various criteria for detecting non-Markovianity are also investigated by checking the dynamical evolution of the channel.
173 - Xian-Li Yin , Yue-Hui Zhou , 2021
The observation of single-photon optomechanical effects is a desired task in cavity optomechanics. However, the realization of ultrastrong optomechanical interaction remains a big challenge. Here, we present an all-optical scheme to simulate ultrastr ong optomechanical coupling based on a Fredkin-type interaction, which consists of two exchange-coupled modes with the coupling strength depending on the photon number in another controller mode. This coupling enhancement is assisted by the displacement amplification according to the physical idea of the Bogoliubov approximation, which is realized by utilizing a strong driving to pump one of the two exchanging modes. Our numerical simulations demonstrate that the enhanced optomechanical coupling can enter the single-photon strong-coupling and even ultrastrong-coupling regimes. We also show the creation of macroscopic quantum superposed states and the implementation of a weak-to-strong transition for quantum measurement in this system. This work will pave the way to quantum simulation of single-photon optomechanical effects with current experimental platforms.
Quantum state tomography (QST) is a crucial ingredient for almost all aspects of experimental quantum information processing. As an analog of the imaging technique in the quantum settings, QST is born to be a data science problem, where machine learn ing techniques, noticeably neural networks, have been applied extensively. In this work, we build an integrated all-optical setup for neural network QST, based on an all-optical neural network (AONN). Our AONN is equipped with built-in nonlinear activation function, which is based on electromagnetically induced transparency. Experiment results demonstrate the validity and efficiency of the all-optical setup, indicating that AONN can mitigate the state-preparation-and-measurement error and predict the phase parameter in the quantum state accurately. Given that optical setups are highly desired for future quantum networks, our all-optical setup of integrated AONN-QST may shed light on replenishing the all-optical quantum network with the last brick.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا