ﻻ يوجد ملخص باللغة العربية
Random numbers are a fundamental resource in science and technology. Among the different approaches to generating them, random numbers created by exploiting the laws of quantum mechanics have proven to be reliable and can be produced at enough rates for their practical use. While these demonstrations have shown very good performance, most of the implementations using free-space and fibre optics, suffer from limitations due to their size, which strongly limits their practical use. Here we report a quantum random number generator based on phase fluctuations from a diode laser, where the other required optical components are integrated on a mm-scale monolithic silicon-on-insulator chip. Our device operates with generation rate in the Gbps regime and the output random numbers pass the NIST statistical tests. Considering the devices size, its simple, robust and low power operation, and the rapid industrial uptake of silicon photonics, we foresee the widespread integration of the reported design in more complex systems.
We propose an approach to realize a quantum random number generator (QRNG) based on the photon number decision of weak laser pulses. This type of QRNG can generate true random numbers at a high speed and can be adjusted to zero bias conveniently, thu
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (AP
The security of electronic devices has become a key requisite for the rapidly-expanding pervasive and hyper-connected world. Robust security protocols ensuring secure communication, devices resilience to attacks, authentication control and users priv
We present a scheme for multi-bit quantum random number generation using a single qubit discrete-time quantum walk in one-dimensional space. Irrespective of the initial state of the qubit, quantum interference and entanglement of particle with the po
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the