ترغب بنشر مسار تعليمي؟ اضغط هنا

Impact of distance determinations on Galactic structure. I. Young and intermediate-age tracers

67   0   0.0 ( 0 )
 نشر من قبل Noriyuki Matsunaga
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we discuss impacts of distance determinations on the Galactic disk traced by relatively young objects. The Galactic disk, about 40 kpc in diameter, is a cross-road of studies on the methods of measuring distances, interstellar extinction, evolution of galaxies, and other subjects of interest in astronomy. A proper treatment of interstellar extinction is, for example, crucial for estimating distances to stars in the disk outside the small range of the solar neighborhood. Well review the current status of relevant studies and discuss some new approaches to the extinction law. When the extinction law is reasonably constrained, distance indicators found in today and future surveys are telling us stellar distribution and more throughout the Galactic disk. Among several useful distance indicators, the focus of this review is Cepheids and open clusters (especially contact binaries in clusters). These tracers are particularly useful for addressing the metallicity gradient of the Galactic disk, an important feature for which comparison between observations and theoretical models can reveal the evolutionary of the disk.

قيم البحث

اقرأ أيضاً

Here we review the efforts of a number of recent results that use old tracers to understand the build up of the Galaxy. Details that lead directly to using these old tracers to measure distances are discussed. We concentrate on the following: (1) the structure and evolution of the Galactic bulge and inner Galaxy constrained from the dynamics of individual stars residing therein; (2) the spatial structure of the old Galactic bulge through photometric observations of RR Lyrae-type stars; (3) the three--dimensional structure, stellar density, mass, chemical composition, and age of the Milky Way bulge as traced by its old stellar populations; (4) an overview of RR Lyrae stars known in the ultra-faint dwarfs and their relation to the Galactic halo; and (5) different approaches for estimating absolute and relative cluster ages.
Distance measurements beyond geometrical and semi-geometrical methods, rely mainly on standard candles. As the name suggests, these objects have known luminosities by virtue of their intrinsic proprieties and play a major role in our understanding of modern cosmology. The main caveats associated with standard candles are their absolute calibration, contamination of the sample from other sources and systematic uncertainties. The absolute calibration mainly depends on their chemical composition and age. To understand the impact of these effects on the distance scale, it is essential to develop methods based on different sample of standard candles. Here we review the fundamental properties of young and intermediate-age distance indicators such as Cepheids, Mira variables and Red Clump stars and the recent developments in their application as distance indicators.
We present a study of the kinematical properties of a small sample of nearby near-infrared bright massive and intermediate mass young stellar objects using emission lines sensitive to discs and winds. We show for the first time that the broad ($sim50 0$kms$^{-1}$) symmetric line wings on the HI Brackett series lines are due to Stark broadening or electron scattering, rather than pure Doppler broadening due to high speed motion. The results are consistent with the presence of a very dense circumstellar environment. In addition, many of these lines show evidence for weak line self-absorption, suggestive of a wind or disc-wind origin for that part of the absorbing material. The weakness of the self-absorption suggests a large opening angle for such an outflow. We also study the fluorescent 1.688$mu$m FeII line, which is sensitive to dense material. We fitted a Keplerian disc model to this line, and find reasonable fits in all bar one case, in agreement with previous finding for classical Be stars that fluorescent iron transitions are reasonable disc tracers. Overall the picture is one in which these stars still have accretion discs, with a very dense inner circumstellar environment which may be tracing either the inner regions of a disc, or of a stellar wind, and in which ionised outflow is also present. The similarity with lower mass stars is striking, suggesting that at least in this mass range they form in a similar fashion.
We report periods and JHKL observations for 648 oxygen-rich Mira variables found in two outer bulge fields at b=-7 degrees and l=+/-8 degrees and combine these with data on 8057 inner bulge Miras from the OGLE, Macho and 2MASS surveys, which are conc entrated closer to the Galactic centre. Distance moduli are estimated for all these stars. Evidence is given showing that the bulge structure is a function of age. The longer period Miras (log P > 2.6, age about 5 Gyr and younger) show clear evidence of a bar structure inclined to the line of sight in both the inner and outer regions. The distribution of the shorter period (metal-rich globular cluster age) Miras, appears spheroidal in the outer bulge. In the inner region these old stars are also distributed differently from the younger ones and possibly suggest a more complex structure. These data suggest a distance to the Galactic centre, R0, of 8.9 kpc with an estimated uncertainty of 0.4 kpc. The possible effect of helium enrichment on our conclusions is discussed.
Type II Cepheids are both useful distance indicators and tracers of old age stellar populations in their host galaxy. We summarize near-infrared observations of type II Cepheids in the Large Magellanic Cloud and discuss the absolute calibration of th eir Period-Luminosity relations. Combining with the near-infrared data for type II Cepheids in the Galactic bulge from the VISTA VVV survey, we estimated a robust distance to the Galactic center. We found that type II Cepheids trace the spherically symmetric spatial distribution with possible evidence of ellipsoidal structure, similar to RR Lyrae stars. Together with Gaia and VVV proper motions, type II Cepheids were found to trace the old, metal-poor, kinematically hot stellar populations in the Galactic bulge.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا