ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum state redistribution with local coherence

62   0   0.0 ( 0 )
 نشر من قبل Alexander Streltsov
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum entanglement and coherence are two fundamental resources for quantum information processing. Recent results clearly demonstrate their relevance in quantum technological tasks, including quantum communication and quantum algorithms. In this Letter we study the role of quantum coherence for quantum state redistribution, a fundamental task where two parties aim to relocate a quantum particle by using a limited amount of quantum communication and shared entanglement. We provide general bounds for the resource rates required for this process, and show that these bounds are tight under additional reasonable constraints, including the situation where the receiving party cannot use local coherence. While entanglement cannot be directly converted into local coherence in our setting, we show that entanglement is still useful for local coherence creation if an additional quantum channel is provided, and the optimal protocol for local coherence creation for any given amount of quantum communication and shared entanglement is presented. We also discuss possible extensions of our methods to other scenarios where the receiving party is limited by local constraints, including theories of thermodynamics and asymmetry.

قيم البحث

اقرأ أيضاً

We revisit the task of quantum state redistribution in the one-shot setting, and design a protocol for this task with communication cost in terms of a measure of distance from quantum Markov chains. More precisely, the distance is defined in terms of quantum max-relative entropy and quantum hypothesis testing entropy. Our result is the first to operationally connect quantum state redistribution and quantum Markov chains, and can be interpreted as an operational interpretation for a possible one-shot analogue of quantum conditional mutual information. The communication cost of our protocol is lower than all previously known ones and asymptotically achieves the well-known rate of quantum conditional mutual information. Thus, our work takes a step towards the important open question of near-optimal characterization of the one-shot quantum state redistribution.
We develop a simple protocol for a one-shot version of quantum state redistribution, which is the most general two-terminal source coding problem. The protocol is simplified from a combination of protocols for the fully quantum reverse Shannon and fu lly quantum Slepian-Wolf problems, with its time-reversal symmetry being apparent. When the protocol is applied to the case where the redistributed states have a tensor power structure, more natural resource rates are obtained.
We consider state redistribution of a hybrid information source that has both classical and quantum components. The sender transmits classical and quantum information at the same time to the receiver, in the presence of classical and quantum side inf ormation both at the sender and at the decoder. The available resources are shared entanglement, and noiseless classical and quantum communication channels. We derive one-shot direct and converse bounds for these three resources, represented in terms of the smooth conditional entropies of the source state. Various coding theorems for two-party source coding problems are systematically obtained by reduction from our results, including the ones that have not been addressed in previous literatures.
Roa et al. showed that quantum state discrimination between two nonorthogonal quantum states does not require quantum entanglement but quantum dissonance only. We find that quantum coherence can also be utilized for unambiguous quantum state discrimi nation. We present a protocol and quantify the required coherence for this task. We discuss the optimal unambiguous quantum state discrimination strategy in some cases. In particular, our work illustrates an avenue to find the optimal strategy for discriminating two nonorthogonal quantum states by measuring quantum coherence.
Single-qubit measurements are typically insufficient for inferring arbitrary quantum states of a multi-qubit system. We show that if the system can be fully controlled by driving a single qubit, then utilizing a local random pulse is almost always su fficient for complete quantum-state tomography. Experimental demonstrations of this principle are presented using a nitrogen-vacancy (NV) center in diamond coupled to a nuclear spin, which is not directly accessible. We report the reconstruction of a highly entangled state between the electron and nuclear spin with fidelity above 95%, by randomly driving and measuring the NV-center electron spin only. Beyond quantum-state tomography, we outline how this principle can be leveraged to characterize and control quantum processes in cases where the system model is not known.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا