ﻻ يوجد ملخص باللغة العربية
Single-spin qubits in semiconductor quantum dots proposed by Loss and DiVincenzo (LD qubits) hold promise for universal quantum computation with demonstrations of a high single-qubit gate fidelity above 99.9 % and two-qubit gates in conjunction with a long coherence time. However, initialization and readout of a qubit is orders of magnitude slower than control, which is detrimental for implementing measurement-based protocols such as error-correcting codes. In contrast, a singlet-triplet (ST) qubit, encoded in a two-spin subspace, has the virtue of fast readout with high fidelity and tunable coupling to the electric field. Here, we present a hybrid system which benefits from the different advantages of these two distinct spin-qubit implementations. A quantum interface between the two codes is realized by electrically tunable inter-qubit exchange coupling. We demonstrate a controlled-phase (CPHASE) gate that acts within 5.5 ns, much faster than the measured dephasing time of 211 ns. The presented hybrid architecture will be useful to settle remaining key problems with building scalable spin-based quantum computers.
Spin waves have risen as promising candidate information carriers for the next generation of information technologies. Recent experimental demonstrations of their detection using electron spins in diamond pave the way towards studying the back-action
The Heisenberg exchange interaction between neighboring quantum dots allows precise voltage control over spin dynamics, due to the ability to precisely control the overlap of orbital wavefunctions by gate electrodes. This allows the study of fundamen
Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a quantum bus, enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics archi
We present a measurement protocol for a flux qubit coupled to a dc-Superconducting QUantum Interference Device (SQUID), representative of any two-state system with a controllable coupling to an harmonic oscillator quadrature, which consists of two st
Electron spin s in semiconductor quantum dot s have been intensively studied for implementing quantum computation and high fidelity single and two qubit operation s have recently been achieved . Quantum teleportation is a three qubit protocol exploit