ﻻ يوجد ملخص باللغة العربية
Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a quantum bus, enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.
We theoretically study single and two-qubit dynamics in the circuit QED architecture. We focus on the current experimental design [Wallraff et al., Nature 431, 162 (2004); Schuster et al., Nature 445, 515 (2007)] in which superconducting charge qubit
Cavity quantum electrodynamics allows one to study the interaction between light and matter at the most elementary level. The methods developed in this field have taught us how to probe and manipulate individual quantum systems like atoms and superco
In this book chapter we analyze the high excitation nonlinear response of the Jaynes-Cummings model in quantum optics when the qubit and cavity are strongly coupled. We focus on the parameter ranges appropriate for transmon qubits in the circuit quan
We study a model which can describe a superconducting single electron transistor (SSET) or a double quantum dot coupled to transmission-line oscillator. In both cases the degree of freedom is given by a charged particle, which couples strongly to the
The future development of quantum information using superconducting circuits requires Josephson qubits [1] with long coherence times combined to a high-fidelity readout. Major progress in the control of coherence has recently been achieved using circ