ترغب بنشر مسار تعليمي؟ اضغط هنا

Machine Learning Enabled Computational Screening of Inorganic Solid Electrolytes for Dendrite Suppression with Li Metal Anode

121   0   0.0 ( 0 )
 نشر من قبل Venkatasubramanian Viswanathan
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

Next generation batteries based on lithium (Li) metal anodes have been plagued by the dendritic electrodeposition of Li metal on the anode during cycling, resulting in short circuit and capacity loss. Suppression of dendritic growth through the use of solid electrolytes has emerged as one of the most promising strategies for enabling the use of Li metal anodes. We perform a computational screening of over 12,000 inorganic solids based on their ability to suppress dendrite initiation in contact with Li metal anode. Properties for mechanically isotropic and anisotropic interfaces that can be used in stability criteria for determining the propensity of dendrite initiation are usually obtained from computationally expensive first-principles methods. In order to obtain a large dataset for screening, we use machine learning models to predict the mechanical properties of several new solid electrolytes. We train a convolutional neural network on the shear and bulk moduli purely on structural features of the material. We use AdaBoost, Lasso and Bayesian ridge regression to train the elastic constants, where the choice of the model depended on the size of the training data and the noise that it can handle. Our models give us direct interpretability by revealing the dominant structural features affecting the elastic constants. The stiffness is found to increase with a decrease in volume per atom, increase in minimum anion-anion separation, and increase in sublattice (all but Li) packing fraction. Cross-validation/test performance suggests our models generalize well. We predict over 20 mechanically anisotropic interfaces between Li metal and 6 solid electrolytes which can be used to suppress dendrite growth. Our screened candidates are generally soft and highly anisotropic, and present opportunities for simultaneously obtaining dendrite suppression and high ionic conductivity in solid electrolytes.



قيم البحث

اقرأ أيضاً

Lithium metal cells are key towards achieving high specific energy and energy density for electrification of transportation and aviation. Anode-free cells are the limiting case of lithium metal cells involving no excess lithium and the highest possib le specific energy. In addition, anode-free cells are easier, cheaper and safer as they avoid handling and manufacturing of lithium metal foils. Issues related to dendrite growth and poor cycling are magnified in anode-free cells due to lack of excess lithium. Electrolyte and current collector surface play a crucial role in affecting the cycling performance of anode-free cells. In this work, we have computationally screened for candidate current collectors that can nucleate lithium effectively and allow uniform growth. These are determined by the free energy of lithium adsorption and lithium surface diffusion barrier on candidate current collectors. Using density functional theory calculations, we show that Li-alloys possess ideal characteristics for Li nucleation and growth. These can lead to vastly improved specific energy compared to current transition metal current collectors.
The large-scale search for high-performing candidate 2D materials is limited to calculating a few simple descriptors, usually with first-principles density functional theory calculations. In this work, we alleviate this issue by extending and general izing crystal graph convolutional neural networks to systems with planar periodicity, and train an ensemble of models to predict thermodynamic, mechanical, and electronic properties. To demonstrate the utility of this approach, we carry out a screening of nearly 45,000 structures for two largely disjoint applications: namely, mechanically robust composites and photovoltaics. An analysis of the uncertainty associated with our methods indicates the ensemble of neural networks is well-calibrated and has errors comparable with those from accurate first-principles density functional theory calculations. The ensemble of models allows us to gauge the confidence of our predictions, and to find the candidates most likely to exhibit effective performance in their applications. Since the datasets used in our screening were combinatorically generated, we are also able to investigate, using an innovative method, structural and compositional design principles that impact the properties of the structures surveyed and which can act as a generative model basis for future material discovery through reverse engineering. Our approach allowed us to recover some well-accepted design principles: for instance, we find that hybrid organic-inorganic perovskites with lead and tin tend to be good candidates for solar cell applications.
Synthesis of advanced inorganic materials with minimum number of trials is of paramount importance towards the acceleration of inorganic materials development. The enormous complexity involved in existing multi-variable synthesis methods leads to hig h uncertainty, numerous trials and exorbitant cost. Recently, machine learning (ML) has demonstrated tremendous potential for material research. Here, we report the application of ML to optimize and accelerate material synthesis process in two representative multi-variable systems. A classification ML model on chemical vapor deposition-grown MoS2 is established, capable of optimizing the synthesis conditions to achieve higher success rate. While a regression model is constructed on the hydrothermal-synthesized carbon quantum dots, to enhance the process-related properties such as the photoluminescence quantum yield. Progressive adaptive model is further developed, aiming to involve ML at the beginning stage of new material synthesis. Optimization of the experimental outcome with minimized number of trials can be achieved with the effective feedback loops. This work serves as proof of concept revealing the feasibility and remarkable capability of ML to facilitate the synthesis of inorganic materials, and opens up a new window for accelerating material development.
The rational tailoring of transition metal complexes is necessary to address outstanding challenges in energy utilization and storage. Heterobimetallic transition metal complexes that exhibit metal-metal bonding in stacked double decker ligand struct ures are an emerging, attractive platform for catalysis, but their properties are challenging to predict prior to laborious synthetic efforts. We demonstrate an alternative, data-driven approach to uncovering structure-property relationships for rational bimetallic complex design. We tailor graph-based representations of the metal-local environment for these heterobimetallic complexes for use in training of multiple linear regression and kernel ridge regression (KRR) models. Focusing on oxidation potentials, we obtain a set of 28 experimentally characterized complexes to develop a multiple linear regression model. On this training set, we achieve good accuracy (mean absolute error, MAE, of 0.25 V) and preserve transferability to unseen experimental data with a new ligand structure. We trained a KRR model on a subset of 330 structurally characterized heterobimetallics to predict the degree of metal-metal bonding. This KRR model predicts relative metal-metal bond lengths in the test set to within 5%, and analysis of key features reveals the fundamental atomic contributions (e.g., the valence electron configuration) that most strongly influence the behavior of complexes. Our work provides guidance for rational bimetallic design, suggesting that properties including the formal shortness ratio should be transferable from one period to another.
We report a workflow and the output of a natural language processing (NLP)-based procedure to mine the extant metal-organic framework (MOF) literature describing structurally characterized MOFs and their solvent removal and thermal stabilities. We ob tain over 2,000 solvent removal stability measures from text mining and 3,000 thermal decomposition temperatures from thermogravimetric analysis data. We assess the validity of our NLP methods and the accuracy of our extracted data by comparing to a hand-labeled subset. Machine learning (ML, i.e. artificial neural network) models trained on this data using graph- and pore-geometry-based representations enable prediction of stability on new MOFs with quantified uncertainty. Our web interface, MOFSimplify, provides users access to our curated data and enables them to harness that data for predictions on new MOFs. MOFSimplify also encourages community feedback on existing data and on ML model predictions for community-based active learning for improved MOF stability models.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا