ﻻ يوجد ملخص باللغة العربية
This paper proposes Medley of Sub-Attention Networks (MoSAN), a new novel neural architecture for the group recommendation task. Group-level recommendation is known to be a challenging task, in which intricate group dynamics have to be considered. As such, this is to be contrasted with the standard recommendation problem where recommendations are personalized with respect to a single user. Our proposed approach hinges upon the key intuition that the decision making process (in groups) is generally dynamic, i.e., a users decision is highly dependent on the other group members. All in all, our key motivation manifests in a form of an attentive neural model that captures fine-grained interactions between group members. In our MoSAN model, each sub-attention module is representative of a single member, which models a users preference with respect to all other group members. Subsequently, a Medley of Sub-Attention modules is then used to collectively make the groups final decision. Overall, our proposed model is both expressive and effective. Via a series of extensive experiments, we show that MoSAN not only achieves state-of-the-art performance but also improves standard baselines by a considerable margin.
A user can be represented as what he/she does along the history. A common way to deal with the user modeling problem is to manually extract all kinds of aggregated features over the heterogeneous behaviors, which may fail to fully represent the data
Next destination recommendation is an important task in the transportation domain of taxi and ride-hailing services, where users are recommended with personalized destinations given their current origin location. However, recent recommendation works
Recommending medications for patients using electronic health records (EHRs) is a crucial data mining task for an intelligent healthcare system. It can assist doctors in making clinical decisions more efficiently. However, the inherent complexity of
Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers t
Recent studies identified that sequential Recommendation is improved by the attention mechanism. By following this development, we propose Relation-Aware Kernelized Self-Attention (RKSA) adopting a self-attention mechanism of the Transformer with aug