ﻻ يوجد ملخص باللغة العربية
NGC1052-DF2 and NGC1052-DF4 are ultra-diffuse galaxies (UDGs) that were found to have extremely low velocity dispersions, indicating that they have little or no dark matter. Both galaxies host anomalously luminous globular cluster (GC) systems, with a peak magnitude of their GC luminosity function (GCLF) that is $sim1.5$ magnitudes brighter than the near-universal value of $M_V approx -7.5$. Here we present an analysis of the joint GCLF of the two galaxies, making use of new HST photometry and Keck spectroscopy, and a recently improved distance measurement. We apply a homogeneous photometric selection method to the combined GC sample of DF2 and DF4. The new analysis shows that the peak of the combined GC luminosity function remains at $M_V approx -9$ mag. In addition, we find a subpopulation of less luminous GCs at $M_V approx -7.5$ mag, where the near-universal GCLF peak is located. The number of GCs in the magnitude range of $-5$ to $-8$ is $7.1_{-4.34}^{+7.33}$ in DF2 and $8.6_{-4.83}^{+7.74}$ in DF4, similar to that expected from other galaxies of the same luminosity. The total GC number between $M_V$ of $-5$ to $-11$ is $18.5_{-4.42}^{+8.99}$ for DF2 and $18.6_{-4.92}^{+9.37}$ for DF4, calculated from the background-subtracted GCLF. The updated total number of GCs in both galaxies is $37^{+11.08}_{-6.54}$. The number of GCs do not scale with the halo mass in either DF2 or DF4, suggesting that $N_{GC}$ is not directly determined by the merging of halos.
[KKS2000]04 (NGC1052-DF2) has become a controversial and well-studied galaxy after the claims suggesting a lack of dark matter and the presence of an anomalously bright globular cluster (GC) system around it. A precise determination of its overall st
Observations of ultra-diffuse galaxies NGC 1052-DF2 and -DF4 show they may contain little dark matter, challenging our understanding of galaxy formation. Using controlled N-body simulations, we explore the possibility that their properties can be rep
We recently published velocity measurements of luminous globular clusters in the galaxy NGC1052-DF2, concluding that it lies far off the canonical stellar mass - halo mass relation. Here we present a revised velocity for one of the globular clusters,
A great challenge in present-day physics is to understand whether the observed internal dynamics of galaxies is due to dark matter matter or due to a modification of the law of gravity. Recently, van Dokkum et al. reported that the ultra-diffuse dwar
It is demonstrated that the kinematics of the 10 star clusters in NGC2052-DF2 is compatible with a high dynamical mass close to those implied by the standard stellar-to-halo-mass ratio (SHMR). The analysis relies on a convenient form for the distribu