ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Neutron Halo State of ${}^{15}$B Around $3.48$ MeV By A Three-Body Model

76   0   0.0 ( 0 )
 نشر من قبل Dong Bai
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate low-lying bound states of the neutron-rich nucleus ${}^{15}$B by assuming it is a three-body system made of an inert core ${}^{13}$B and two valence neutrons. The three-body wave functions are obtained using the Faddeev formalism. Special attention is paid to the excited state at $3.48(6)$ MeV observed in the ${}^{13}text{C}({}^{14}text{C},{}^{12}text{N}){}^{15}text{B}$ reaction, whose properties are less clear theoretically. In our three-body model, besides the ground state $3/2_1^-$, a second $3/2_2^-$ state is discovered at around $3.61$ MeV, which might be identified with the excited state observed at $3.48(6)$ MeV. We study this $3/2_2^-$ state in detail, which turns out to be a two-neutron halo state with a large matter radius $r_text{m}approx 4.770$ fm.

قيم البحث

اقرأ أيضاً

Background$colon$ The $^{29}$F system is located at the lower-N boundary of the island of inversion and is an exotic, weakly bound system. Little is known about this system beyond its two-neutron separation energy ($S_{2n}$) with large uncertainties. A similar situation is found for the low-lying spectrum of its unbound binary subsystem $^{28}$F. Purpose$colon$ To investigate the configuration mixing, matter radius and neutron-neutron correlations in the ground state of $^{29}$F within a three-body model, exploring the possibility of $^{29}$F to be a two-neutron halo nucleus. Method$colon$ The $^{29}$F ground-state wave function is built within the hyperspherical formalism by using an analytical transformed harmonic oscillator basis. The Gogny-Pires-Tourreil (GPT) nn interaction with central, spin-orbit and tensor terms is employed in the present calculations, together with different core$+n$ potentials constrained by the available experimental information on $^{28}$F. Results$colon$ The $^{29}$F ground-state configuration mixing and its matter radius are computed for different choices of the $^{28}$F structure and $S_{2n}$ value. The admixture of d-waves with pf components are found to play an important role, favoring the dominance of dineutron configurations in the wave function. Our computed radii show a mild sensitivity to the $^{27}$F$+n$ potential and $S_{2n}$ values. The relative increase of the matter radius with respect to the $^{27}$F core lies in the range 0.1-0.4 fm depending upon these choices. Conclusions$colon$ Our three-body results for $^{29}$F indicate the presence of a moderate halo structure in its ground state, which is enhanced by larger intruder components. This finding calls for an experimental confirmation.
79 - N. Michel , J.G. Li , F.R. Xu 2020
We apply the Gamow shell model to study $^{25-31}$F isotopes. As both inter-nucleon correlations and continuum coupling are properly treated therein, the structure shape of $^{31}$F at large distance can be analyzed precisely. For this, one-nucleon d ensities, root-mean square radii and correlation densities are calculated in neutron-rich fluorine isotopes. It is then suggested that $^{31}$F exhibits a two-neutron halo structure, built from both continuum coupling and nucleon-nucleon correlations.
The low-energy behavior of the strength function for the $1^-$ soft dipole excitation in $^{6}$He is studied theoretically. Use of very large basis sizes and well-grounded extrapolation procedures allows to move to energies as small as 1 keV, at whic h the low-energy asymptotic behavior of the E1 strength function seems to be achieved. It is found that the low-energy behavior of the strength function is well described in the effective three-body dynamical dineutron model. The astrophysical rate for the $alpha$+$n$+$n rightarrow ^6$He+$gamma$ is calculated. Comparison with the previous calculations is performed.
67 - H. Masui , W. Horiuchi , 2020
Background: A newly identified dripline nucleus $^{31}$F offers a unique opportunity to study the two-neutron ($2n$) correlation at the east shore of the island of inversion where the $N = 28$ shell closure is lost. Purpose: We aim to present the f irst three-body theoretical results for the radius and total reaction cross sections of $^{31}$F. This will further help to investigate how the pairing and breakdown of the $N = 28$ shell closure influence the formation of the $2n$-halo structure and the anti-halo effect in this mass region. Methods: A $^{29}$F$+n+n$ three-body system is described by the cluster orbital shell model, and its total reaction cross section is calculated by the Glauber theory. Results: Our three-body calculations predict 3.48-3.70 fm for the root-mean-square radius of $^{31}$F, which corresponds to the total reaction cross section of 1530 (1410)-1640 (1500) mb for a carbon target at 240 (900) MeV/nucleon. The binding mechanism and halo formation in $^{31}$F are discussed. Conclusions: The present study suggests a novel anti-halo effect in this mass region: When the pairing overcome the energy gap between the $p_{3/2}$ and $f_{7/2}$ orbits, the inversion of the occupation number of these orbits takes place, and it diminishes the $2n$-halo structure.
We consider the evolution of the neutron-nucleus scattering length for the lightest nuclei. We show that, when increasing the number of neutrons in the target nucleus, the strong Pauli repulsion is weakened and the balance with the attractive nucleon -nucleon interaction results into a resonant virtual state in $^{18}$B. We describe $^{19}$B in terms of a $^{17}$B-$n$-$n$ three-body system where the two-body subsystems $^{17}$B-$n$ and $n$-$n$ are unbound (virtual) states close to the unitary limit. The energy of $^{19}$B ground state is well reproduced and two low-lying resonances are predicted. Their eventual link with the Efimov physics is discussed. This model can be extended to describe the recently discovered resonant states in $^{20,21}$B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا