ﻻ يوجد ملخص باللغة العربية
We study when the period and the index of a class in the Brauer group of the function field of a real algebraic surface coincide. We prove that it is always the case if the surface has no real points (more generally, if the class vanishes in restriction to the real points of the locus where it is well-defined), and give a necessary and sufficient condition for unramified classes. As an application, we show that the u-invariant of the function field of a real algebraic surface is equal to 4, answering questions of Lang and Pfister. Our strategy relies on a new Hodge-theoretic approach to de Jongs period-index theorem on complex surfaces.
The standard period-index conjecture for the Brauer group of a field of transcendence degree 2 over a $p$-adic field predicts that the index divides the cube of the period. Using Gabbers theory of prime-to-$ell$ alterations and the deformation theory
We establish upper bounds of the indices of topological Brauer classes over a closed orientable 8-manifolds. In particular, we verify the Topological Period-Index Conjecture (TPIC) for topological Brauer classes over closed orientable 8-manifolds of
Let M_0^R be the moduli space of smooth real cubic surfaces. We show that each of its components admits a real hyperbolic structure. More precisely, one can remove some lower-dimensional geodesic subspaces from a real hyperbolic space H^4 and form th
We initiate the study of random iteration of automorphisms of real and complex projective surfaces, or more generally compact K{a}hler surfaces, focusing on the fundamental problem of classification of stationary measures. We show that, in a number o
The surfaces considered are real, rational and have a unique smooth real $(-2)$-curve. Their canonical class $K$ is strictly negative on any other irreducible curve in the surface and $K^2>0$. For surfaces satisfying these assumptions, we suggest a c