ﻻ يوجد ملخص باللغة العربية
The characterisation of information processing is an important task in complex systems science. Information dynamics is a quantitative methodology for modelling the intrinsic information processing conducted by a process represented as a time series, but to date has only been formulated in discrete time. Building on previous work which demonstrated how to formulate transfer entropy in continuous time, we give a total account of information processing in this setting, incorporating information storage. We find that a convergent rate of predictive capacity, comprised of the transfer entropy and active information storage, does not exist, arising through divergent rates of active information storage. We identify that active information storage can be decomposed into two separate quantities that characterise predictive capacity stored in a process: active memory utilisation and instantaneous predictive capacity. The latter involves prediction related to path regularity and so solely inherits the divergent properties of the active information storage, whilst the former permits definitions of pathwise and rate quantities. We formulate measures of memory utilisation for jump and neural spiking processes and illustrate measures of information processing in synthetic neural spiking models and coupled Ornstein-Uhlenbeck models. The application to synthetic neural spiking models demonstrates that active memory utilisation for point processes consists of discontinuous jump contributions (at spikes) interrupting a continuously varying contribution (relating to waiting times between spikes), complementing the behaviour previously demonstrated for transfer entropy in these processes.
Transfer entropy has been used to quantify the directed flow of information between source and target variables in many complex systems. While transfer entropy was originally formulated in discrete time, in this paper we provide a framework for consi
Motivated by applications in distributed storage, the storage capacity of a graph was recently defined to be the maximum amount of information that can be stored across the vertices of a graph such that the information at any vertex can be recovered
In a two-user channel, completion time refers to the number of channel uses spent by each user to transmit a bit pool with some given size. In this paper, the information-theoretic formulation of completion time is based on the concept of constrained
We introduce an axiomatic approach to entropies and relative entropies that relies only on minimal information-theoretic axioms, namely monotonicity under mixing and data-processing as well as additivity for product distributions. We find that these
Biological and artificial neural systems are composed of many local processors, and their capabilities depend upon the transfer function that relates each local processors outputs to its inputs. This paper uses a recent advance in the foundations of