ﻻ يوجد ملخص باللغة العربية
Transfer entropy has been used to quantify the directed flow of information between source and target variables in many complex systems. While transfer entropy was originally formulated in discrete time, in this paper we provide a framework for considering transfer entropy in continuous time systems, based on Radon-Nikodym derivatives between measures of complete path realizations. To describe the information dynamics of individual path realizations, we introduce the pathwise transfer entropy, the expectation of which is the transfer entropy accumulated over a finite time interval. We demonstrate that this formalism permits an instantaneous transfer entropy rate. These properties are analogous to the behavior of physical quantities defined along paths such as work and heat. We use this approach to produce an explicit form for the transfer entropy for pure jump processes, and highlight the simplified form in the specific case of point processes (frequently used in neuroscience to model neural spike trains). Finally, we present two synthetic spiking neuron model examples to exhibit the pertinent features of our formalism, namely, that the information flow for point processes consists of discontinuous jump contributions (at spikes in the target) interrupting a continuously varying contribution (relating to waiting times between target spikes). Numerical schemes based on our formalism promise significant benefits over existing strategies based on discrete time formalisms.
The characterisation of information processing is an important task in complex systems science. Information dynamics is a quantitative methodology for modelling the intrinsic information processing conducted by a process represented as a time series,
This paper describes the structure of solutions to Kolmogorovs equations for nonhomogeneous jump Markov processes and applications of these results to control of jump stochastic systems. These equations were studied by Feller (1940), who clarified in
Two principles explain emergence. First, in the Receipts reference frame, Deg(S) = 4/3 Deg(R), where Supply S is an isotropic radiative energy source, Receipt R receives Ss energy, and Deg is a systems degrees of freedom based on its mean path length
Considering the widespread use of effective capacity in cross-layer design and the extensive existence of renewal service processes in communication networks, this paper thoroughly investigates the effective capacity for renewal processes. Based on Z
This paper provides tight bounds on the Renyi entropy of a function of a discrete random variable with a finite number of possible values, where the considered function is not one-to-one. To that end, a tight lower bound on the Renyi entropy of a dis