ترغب بنشر مسار تعليمي؟ اضغط هنا

MultiView phase corrections at low frequencies for precise astrometry

69   0   0.0 ( 0 )
 نشر من قبل Gabor Orosz PhD
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multi-calibrator solution, i.e. MultiView, to achieve accurate astrometry on the level of the thermal noise at low VLBI frequencies dominated by ionospheric residuals. We demonstrate on L-band VLBA observations how MultiView provides superior astrometry to conventional phase referencing techniques (Rioja et al. 2017). We also introduce a new trial method to detect antenna based systematic errors in the observations (Orosz et al. 2017}. All presented methods and results are based on our recent papers (Orosz et al. 2017; Rioja et al. 2017).



قيم البحث

اقرأ أيضاً

174 - R. Dodson , M. Rioja , Y. Asaki 2013
High precision astrometric Space Very Long Baseline Interferometry (S-VLBI) at the low end of the conventional frequency range, i.e. 20cm, is a requirement for a number of high priority science goals. These are headlined by obtaining trigonometric pa rallax distances to pulsars in Pulsar--Black Hole pairs and OH masers anywhere in the Milky Way Galaxy and the Magellanic Clouds. We propose a solution for the most difficult technical problems in S-VLBI by the MultiView approach where multiple sources, separated by several degrees on the sky, are observed simultaneously. We simulated a number of challenging S-VLBI configurations, with orbit errors up to 8m in size and with ionospheric atmospheres consistant with poor conditions. In these simulations we performed MultiView analysis to achieve the required science goals. This approach removes the need for beam switching requiring a Control Moment Gyro, and the space and ground infrastructure required for high quality orbit reconstruction of a space-based radio telescope. This will dramatically reduce the complexity of S-VLBI missions which implement the phase-referencing technique.
The goal of this paper is to establish the requirements of a barycentric correction with an RMS of $lesssim 1$ cm/s, which is an order of magnitude better than necessary for the Doppler detection of true Earth analogs ($sim9$ cm/s). We describe the t heory and implementation of accounting for the effects on precise Doppler measurements of motion of the telescope through space, primarily from rotational and orbital motion of the Earth, and the motion of the solar system with respect to target star (i.e. the barycentric correction). We describe the minimal algorithm necessary to accomplish this and how it differs from a naive subtraction of velocities (i.e. a Galilean transformation). We demonstrate the validity of code we have developed from the California Planet Survey code via comparison with the pulsar timing package, TEMPO2. We estimate the magnitude of various terms and effects, including relativistic effects, and the errors associated with incomplete knowledge of telescope position, timing, and stellar position and motion. We note that chromatic aberration will create uncertainties in the time of observation, which will complicate efforts to detect true Earth analogs. Our code is available for public use and validation.
The radio sky at lower frequencies, particularly below 20 MHz, is expected to be a combination of increasingly bright non-thermal emission and significant absorption from intervening thermal plasma. The sky maps at these frequencies cannot therefore be obtained by simple extrapolation of those at higher frequencies. However, due to severe constraints in ground-based observations, this spectral window still remains greatly unexplored. In this paper, we propose and study, through simulations, a novel minimal configuration for a space interferometer system which would enable imaging of the radio sky at frequencies well below 20 MHz with angular resolutions comparable to those achieved at higher radio frequencies in ground-based observations by using the aperture-synthesis technique. The minimal configuration consists of three apertures aboard Low Earth Orbit (LEO) satellites orbiting the Earth in mutually orthogonal orbits. Orbital periods for the satellites are deliberately chosen to differ from each other so as to obtain maximum (u, v) coverage in short time spans with baselines greater than 15000 km, thus, giving us angular resolutions finer than 10 arcsec even at these low frequencies. The sensitivity of the (u, v) coverage is assessed by varying the orbit and the initial phase of the satellites. We discuss the results obtained from these simulations and highlight the advantages of such a system.
We present a technique-led review of the progression of precise radio astrometry, from the first demonstrations, half a century ago, until to date and into the future. We cover the developments that have been fundamental to allow high accuracy and pr ecision astrometry to be regularly achieved. We review the opportunities provided by the next-generation of instruments coming online, which are primarily: SKA, ngVLA and pathfinders, along with EHT and other (sub)mm-wavelength arrays, Space-VLBI, Geodetic arrays and optical astrometry from GAIA. From the historical development we predict the future potential astrometric performance, and therefore the instrumental requirements that must be provided to deliver these. The next-generation of methods will allow ultra-precise astrometry to be performed at a much wider range of frequencies (hundreds of MHz to hundreds of GHz). One of the key potentials is that astrometry will become generally applicable, and therefore unbiased large surveys can be performed. The next-generation methods are fundamental in allowing this. We review the small but growing number of major astrometric surveys in the radio, to highlight the scientific impact that such projects can provide. Based on these perspectives, the future of radio astrometry is bright. We foresee a revolution coming from: ultra-high precision radio astrometry, large surveys of many objects, improved sky coverage and at new frequency bands other than those available today. These will enable the addressing of a host of innovative open scientific questions in astrophysics.
High precision astrometry provides the foundation to resolve many fundamental problems in astrophysics. The application of astrometric studies spans a wide range of fields, and has undergone enormous growth in recent years. This is as a consequence o f the increasing measurement precision and wide applicability, which is due in turn to the development of new techniques. Forthcoming next generation observatories have the potential to further increase the astrometric precision, providing there is a matching improvement in the methods to correct for systematic errors. The EVN and other observatories are providing demonstrations of these and are acting as pathfinders for next-generation telescopes such as the SKA and ngVLA. We will review the perspectives for the coming facilities and examples of the current state-of-the-art for astrometry.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا