ﻻ يوجد ملخص باللغة العربية
Measuring chaos of QCD-like theories is a challenge for formulating a novel characterization of quantum gauge theories. We define a chaos phase diagram of QCD allowing us to locate chaos in the parameter space of energy of homogeneous meson condensates and the QCD parameters such as pion/quark mass. We draw the chaos phase diagrams obtained in two ways: first, by using a linear sigma model, varying parameters of the potential, and second, by using the D4/D6 holographic QCD, varying the number of colors $N_c$ and the t Hooft coupling constant $lambda$. A scaling law drastically simplifies our analyses, and we discovered that the chaos originates in the maximum of the potential, and larger $N_c$ or larger $lambda$ diminishes the chaos.
It is challenging to quantify chaos of QCD, because non-perturbative QCD accompanies non-local observables. By using holography, we find that QCD strings at large $N_c$ and strong coupling limit exhibit chaos, and measure their Lyapunov exponent at z
This is the contribution to Quarks2018 conference proceedings. This contribution is devoted to the holographic description of chaos and quantum complexity in the strongly interacting systems out of equilibrium. In the first part of the talk we presen
We define a particular combination of charge and heat currents that is decoupled with the heat current. This `heat-decoupled (HD) current can be transported by diffusion at long distances, when some thermo-electric conductivities and susceptibilities
We study non-local non-linear sigma models in arbitrary dimension, focusing on the scale invariant limit in which the scalar fields naturally have scaling dimension zero, so that the free propagator is logarithmic. The classical action is a bi-local
Stationary solutions of 5D supergravity with U(1) isometry can be efficiently studied by dimensional reduction to three dimensions, where they reduce to solutions to a locally supersymmetric non-linear sigma model. We generalize this procedure to 5D