ترغب بنشر مسار تعليمي؟ اضغط هنا

Active covariance estimation by random sub-sampling of variables

264   0   0.0 ( 0 )
 نشر من قبل Eduardo Pavez
 تاريخ النشر 2018
والبحث باللغة English




اسأل ChatGPT حول البحث

We study covariance matrix estimation for the case of partially observed random vectors, where different samples contain different subsets of vector coordinates. Each observation is the product of the variable of interest with a $0-1$ Bernoulli random variable. We analyze an unbiased covariance estimator under this model, and derive an error bound that reveals relations between the sub-sampling probabilities and the entries of the covariance matrix. We apply our analysis in an active learning framework, where the expected number of observed variables is small compared to the dimension of the vector of interest, and propose a design of optimal sub-sampling probabilities and an active covariance matrix estimation algorithm.



قيم البحث

اقرأ أيضاً

Game-theoretic attribution techniques based on Shapley values are used extensively to interpret black-box machine learning models, but their exact calculation is generally NP-hard, requiring approximation methods for non-trivial models. As the comput ation of Shapley values can be expressed as a summation over a set of permutations, a common approach is to sample a subset of these permutations for approximation. Unfortunately, standard Monte Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi Monte Carlo methods are not well defined on the space of permutations. To address this, we investigate new approaches based on two classes of approximation methods and compare them empirically. First, we demonstrate quadrature techniques in a RKHS containing functions of permutations, using the Mallows kernel to obtain explicit convergence rates of $O(1/n)$, improving on $O(1/sqrt{n})$ for plain Monte Carlo. The RKHS perspective also leads to quasi Monte Carlo type error bounds, with a tractable discrepancy measure defined on permutations. Second, we exploit connections between the hypersphere $mathbb{S}^{d-2}$ and permutations to create practical algorithms for generating permutation samples with good properties. Experiments show the above techniques provide significant improvements for Shapley value estimates over existing methods, converging to a smaller RMSE in the same number of model evaluations.
186 - Dorian Baudry 2020
In this paper we propose the first multi-armed bandit algorithm based on re-sampling that achieves asymptotically optimal regret simultaneously for different families of arms (namely Bernoulli, Gaussian and Poisson distributions). Unlike Thompson Sam pling which requires to specify a different prior to be optimal in each case, our proposal RB-SDA does not need any distribution-dependent tuning. RB-SDA belongs to the family of Sub-sampling Duelling Algorithms (SDA) which combines the sub-sampling idea first used by the BESA [1] and SSMC [2] algorithms with different sub-sampling schemes. In particular, RB-SDA uses Random Block sampling. We perform an experimental study assessing the flexibility and robustness of this promising novel approach for exploration in bandit models.
95 - Shahana Ibrahim , Xiao Fu 2020
Learning the joint probability of random variables (RVs) is the cornerstone of statistical signal processing and machine learning. However, direct nonparametric estimation for high-dimensional joint probability is in general impossible, due to the cu rse of dimensionality. Recent work has proposed to recover the joint probability mass function (PMF) of an arbitrary number of RVs from three-dimensional marginals, leveraging the algebraic properties of low-rank tensor decomposition and the (unknown) dependence among the RVs. Nonetheless, accurately estimating three-dimensional marginals can still be costly in terms of sample complexity, affecting the performance of this line of work in practice in the sample-starved regime. Using three-dimensional marginals also involves challenging tensor decomposition problems whose tractability is unclear. This work puts forth a new framework for learning the joint PMF using only pairwise marginals, which naturally enjoys a lower sample complexity relative to the third-order ones. A coupled nonnegative matrix factorization (CNMF) framework is developed, and its joint PMF recovery guarantees under various conditions are analyzed. Our method also features a Gram--Schmidt (GS)-like algorithm that exhibits competitive runtime performance. The algorithm is shown to provably recover the joint PMF up to bounded error in finite iterations, under reasonable conditions. It is also shown that a recently proposed economical expectation maximization (EM) algorithm guarantees to improve upon the GS-like algorithms output, thereby further lifting up the accuracy and efficiency. Real-data experiments are employed to showcase the effectiveness.
We propose a new method for modeling the distribution function of high dimensional extreme value distributions. The Pickands dependence function models the relationship between the covariates in the tails, and we learn this function using a neural ne twork that is designed to satisfy its required properties. Moreover, we present new methods for recovering the spectral representation of extreme distributions and propose a generative model for sampling from extreme copulas. Numerical examples are provided demonstrating the efficacy and promise of our proposed methods.
105 - Clement Gauchy , Cyril Feau , 2021
As part of Probabilistic Risk Assessment studies, it is necessary to study the fragility of mechanical and civil engineered structures when subjected to seismic loads. This risk can be measured with fragility curves, which express the probability of failure of the structure conditionally to a seismic intensity measure. The estimation of fragility curves relies on time-consuming numerical simulations, so that careful experimental design is required in order to gain the maximum information on the structures fragility with a limited number of code evaluations. We propose and implement an active learning methodology based on adaptive importance sampling in order to reduce the variance of the training loss. The efficiency of the proposed method in terms of bias, standard deviation and prediction interval coverage are theoretically and numerically characterized.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا