ﻻ يوجد ملخص باللغة العربية
A subfamily ${F_1,F_2,dots,F_{|P|}}subseteq mathcal F$ is a copy of the poset $P$ if there exists a bijection $i:Prightarrow {F_1,F_2,dots,F_{|P|}}$ such that $ple_P q$ implies $i(p)subseteq i(q)$. A family $mathcal F$ is $P$-free, if it does not contain a copy of $P$. In this paper we establish basic results on the maximum possible number of $k$-chains in a $P$-free family $mathcal Fsubseteq 2^{[n]}$. We prove that if the height of $P$, $h(P) > k$, then this number is of the order $Theta(prod_{i=1}^{k+1}binom{l_{i-1}}{l_i})$, where $l_0=n$ and $l_1ge l_2ge dots ge l_{k+1}$ are such that $n-l_1,l_1-l_2,dots, l_k-l_{k+1},l_{k+1}$ differ by at most one. On the other hand if $h(P)le k$, then we show that this number is of smaller order of magnitude. Let $vee_r$ denote the poset on $r+1$ elements $a, b_1, b_2, ldots, b_r$, where $a < b_i$ for all $1 le i le r$ and let $wedge_r$ denote its dual. For any values of $k$ and $l$, we construct a ${wedge_k,vee_l}$-free family and we conjecture that it contains asymptotically the maximum number of pairs in containment. We prove that this conjecture holds under the additional assumption that a chain of length 4 is forbidden. Moreover, we prove the conjecture for some small values of $k$ and $l$. We also derive the asymptotics of the maximum number of copies of certain tree posets $T$ of height 2 in ${wedge_k,vee_l}$-free families $mathcal F subseteq 2^{[n]}$.
For a family $mathcal F$, let $mathcal D(mathcal F)$ stand for the family of all sets that can be expressed as $Fsetminus G$, where $F,Gin mathcal F$. A family $mathcal F$ is intersecting if any two sets from the family have non-empty intersection. I
We count the ordered sum-free triplets of subsets in the group $mathbb{Z}/pmathbb{Z}$, i.e., the triplets $(A,B,C)$ of sets $A,B,C subset mathbb{Z}/pmathbb{Z}$ for which the equation $a+b=c$ has no solution with $ain A$, $b in B$ and $c in C$. Our ma
A family $mathcal F$ has covering number $tau$ if the size of the smallest set intersecting all sets from $mathcal F$ is equal to $s$. Let $m(n,k,tau)$ stand for the size of the largest intersecting family $mathcal F$ of $k$-element subsets of ${1,ld
For a simple graph $G$, let $chi_f(G)$ be the fractional chromatic number of $G$. In this paper, we aim to establish upper bounds on $chi_f(G)$ for those graphs $G$ with restrictions on the clique number. Namely, we prove that for $Delta geq 4$, if $
A subset $A$ of the $k$-dimensional grid ${1,2, cdots, N}^k$ is called $k$-dimensional corner-free if it does not contain a set of points of the form ${ a } cup { a + de_i : 1 leq i leq k }$ for some $a in {1,2, cdots, N}^k$ and $d > 0$, where $e_1,e