ﻻ يوجد ملخص باللغة العربية
We introduce gauge theories based on a class of disconnected gauge groups, called principal extensions. Although in this work we focus on 4d theories with N=2 SUSY, such construction is independent of spacetime dimensions and supersymmetry. These groups implement in a consistent way the discrete gauging of charge conjugation, for arbitrary rank. Focusing on the principal extension of SU(N), we explain how many of the exact methods for theories with 8 supercharges can be put into practice in that context. We then explore the physical consequences of having a disconnected gauge group: we find that the Coulomb branch is generically non-freely generated, and the global symmetry of the Higgs branch is modified in a non-trivial way.
In this paper we present a beautifully consistent web of evidence for the existence of interacting 4d rank-1 $mathcal{N}=2$ SCFTs obtained from gauging discrete subgroups of global symmetries of other existing 4d rank-1 $mathcal{N}=2$ SCFTs. The glob
We discuss the possibility of a class of gauge theories, in four Euclidean dimensions, to describe gravity at quantum level. The requirement is that, at low energies, these theories can be identified with gravity as a geometrodynamical theory. Specif
We discuss the modular anomaly equation satisfied by the the prepotential of 4-dimensional N=2* theories and show that its validity is related to S-duality. The recursion relations that follow from the modular anomaly equation allow one to write the
This is a brief introductory review of the AdS/CFT correspondence and of the ideas that led to its formulation. Emphasis is placed on dualities between conformal large $N$ gauge theories in 4 dimensions and string backgrounds of the form $AdS_5times
Pure gauge theories for de Sitter, anti de Sitter and orthogonal groups, in four-dimensional Euclidean spacetime, are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges.