ﻻ يوجد ملخص باللغة العربية
We present the first 2D hydrodynamical finite volume simulations in which dust is fully coupled with the gas, including its back-reaction onto it, and at the same time the dust size is evolving according to coagulation and fragmentation based on a sub-grid model. The aim of this analysis is to present the differences occurring when dust evolution is included relative to simulations with fixed dust size, with and without an embedded Jupiter-mass planet that triggers gap formation. We use the two-fluid polar Godunov-type code RoSSBi developed by Surville et al. 2016 combined with a new local sub-grid method for dust evolution based on the model by Birnstiel et al. 2012. We find striking differences between simulations with variable and fixed dust sizes. The timescales for dust depletion differ significantly and yield a completely different evolution of the dust surface density. In general sharp features such as pile-ups of dust in the inner disk and near gap edges, when a massive planet is present, become much weaker. This has important implications on the interpretation of observed substructure in disks, suggesting that the presence of a massive planet does not necessarily cause sharp gaps and rings in the dust component. Also, particles with different dust sizes show a different distribution, pointing to the importance of multi-wavelength synthetic observations in order to compare with observations by ALMA and other instruments. We also find that simulations adopting fixed intermediate particle sizes, in the range $10^{-2} - 10^{-1}$ cm, best approximate the surface density evolution seen in simulations with dust evolution.
We present a new instability driven by a combination of coagulation and radial drift of dust particles. We refer to this instability as ``coagulation instability and regard it as a promising mechanism to concentrate dust particles and assist planetes
Context. The growth process of dust particles in protoplanetary disks can be modeled via numerical dust coagulation codes. In this approach, physical effects that dominate the dust growth process often must be implemented in a parameterized form. Due
ALMA has revolutionized our view of protoplanetary disks, revealing structures such as gaps, rings and asymmetries that indicate dust trapping as an important mechanism in the planet formation process. However, the high resolution images have also sh
Planet formation is thought to begin with the growth of dust particles in protoplanetary disks from micrometer to millimeter and centimeter sizes. Dust growth is hindered by a number of growth barriers, according to dust evolution theory, while obser
The central region of a circumstellar disk is difficult to resolve in global numerical simulations of collapsing cloud cores, but its effect on the evolution of the entire disk can be significant. We use numerical hydrodynamics simulations to model t