ترغب بنشر مسار تعليمي؟ اضغط هنا

Gravitoviscous protoplanetary disks with a dust component. I. The importance of the inner sub-au region

209   0   0.0 ( 0 )
 نشر من قبل Vardan Elbakyan
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The central region of a circumstellar disk is difficult to resolve in global numerical simulations of collapsing cloud cores, but its effect on the evolution of the entire disk can be significant. We use numerical hydrodynamics simulations to model the long-term evolution of self-gravitating and viscous circumstellar disks in the thin-disk limit. Simulations start from the gravitational collapse of prestellar cores of 0.5--1.0~$M_odot$ and both gaseous and dusty subsystems were considered, including a model for dust growth. The inner unresolved 1.0 au of the disk is replaced with a central smart cell (CSC) -- a simplified model that simulates physical processes that may occur in this region. We found that the mass transport rate through the CSC has an appreciable effect on the evolution of the entire disk. Models with slow mass transport form more massive and warmer disks and they are more susceptible to gravitational instability and fragmentation, including a newly identified episodic mode of disk fragmentation in the T Tauri phase of disk evolution. Models with slow mass transport through the CSC feature episodic accretion and luminosity bursts in the early evolution, while models with fast transport are characterized by a steadily declining accretion rate with low-amplitude flickering. Dust grows to a larger, decimeter size in the slow transport models and efficiently drifts in the CSC, where it accumulates reaching the limit when streaming instability becomes operational. We argue that gravitational instability, together with streaming instability likely operating in the inner disk regions, constitute two concurrent planet-forming mechanisms, which may explain the observed diversity of exoplanetary orbits (Abridged).

قيم البحث

اقرأ أيضاً

The crucial initial step in planet formation is the agglomeration of micron-sized dust into macroscopic aggregates. This phase is likely to happen very early during the protostellar disc formation, which is characterised by active gas dynamics. We pr esent numerical simulations of protostellar/protoplanetary disc long-term evolution, which includes gas dynamics with self-gravity in the thin-disc limit, and bidisperse dust grain evolution due to coagulation, fragmentation, and drift through the gas. We show that the decrease of the grain size to the disc periphery leads to sharp outer edges in dust millimetre emission, which are explained by a drop in dust opacity coefficient rather than by dust surface density variations. These visible outer edges are at the location where average grain size $approx lambda/2pi$, where $lambda$ is the observational wavelength, so discs typically look more compact at longer wavelengths if dust size decreases outwards. This allows a simple recipe for reconstructing grain sizes in disc outer regions. Discs may look larger at longer wavelengths if grain size does not reach $lambda/2pi$ for some wavelength. Disc visible sizes evolve non-monotonically over the first million years and differ from dust and gas physical sizes by factor of a few. We compare our model with recent observation data on gas and dust disc sizes, far-infrared fluxes and spectral indices of protoplanetary discs in Lupus. We also show that non-monotonic variations of the grain size in radial direction can cause wavelength-dependent opacity gaps, which are not associated with any physical gaps in the dust density distribution.
Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Hydrodynamics equations describing the evolut ion of self-gravitating and viscous protoplanetary disks in the thin-disk limit were modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a variable maximum radius. The conversion of small to grown dust, dust growth, friction of dust with gas, and dust self-gravity were also considered. We found that the disk appearance is notably time-variable with spiral arms, dusty rings, and clumps, constantly forming, evolving, and decaying. As a consequence, the total dust-to-gas mass ratio is highly non-homogeneous throughout the disk extent, showing order-of-magnitude local deviations from the canonical 1:100 value. Gravitationally bound clumps formed through gravitational fragmentation have a velocity pattern that deviates notably from the Keplerian rotation. Small dust is efficiently converted into grown dust in the clump interiors, reaching a maximum radius of several decimeters. Concurrently, grown dust drifts towards the clump center forming a massive compact central condensation (70-100 $M_oplus$). We argue that protoplanets may form in the interiors of inward migrating clumps before they disperse through the action of tidal torques. We foresee the formation of protoplanets at orbital distances of several tens of au with initial masses of gas and dust in the protoplanetary seed in the (0.25-1.6) $M_{rm Jup}$ and (1.0-5.5) $M_oplus$ limits, respectively. The final masses of gas and dust in the protoplanets may however be much higher due to accretion from surrounding massive metal-rich disks/envelopes.
123 - L. Klarmann , M. Benisty , M. Min 2016
To understand the chemical composition of planets, it is important to know the chemical composition of the region where they form in protoplanetary disks. Due to its fundamental role in chemical and biological processes, carbon is a key element to tr ace. We aim to identify the carriers and processes behind the extended NIR flux observed around several Herbig stars. We compare the extended NIR flux from objects in the PIONIER Herbig Ae/Be survey with their flux in the PAH features. HD 100453 is used as a benchmark case to investigate the influence of quantum heated particles, like PAHs or very small carbonaceous grains, in more detail. We use the Monte Carlo radiative transfer code MCMax to do a parameter study of the QHP size and scale- height and examine the influence of quantum heating on the amount of extended flux in the NIR visibilities. There is a correlation between the PAH feature flux of a disk and the amount of its extended NIR flux. We find that very small carbonaceous grains create the observed extended NIR flux around HD 100453 and still lead to a realistic SED. These results can not be achieved without using quantum heating effects, e.g. only with scattered light and grains in thermal equilibrium. It is possible to explain the extended NIR emission around Herbig stars with the presence of carbonaceous, quantum heated particles. Interferometric observations can be used to constrain the spatial distribution and typical size of carbonaceous material in the terrestrial planet forming region.
116 - Xue-Ning Bai 2017
The gas dynamics of weakly ionized protoplanetary disks (PPDs) is largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions ($sim1-20$ AU), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane that smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature characterized by mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
75 - Xue-Ning Bai 2014
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect and ambipolar diffusion. Among these the role of the Hall effect is the least explored a nd most poorly understood. We have included all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies excluding the Hall effect have revealed that the inner disk up to ~10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect introduces modest modifications to the wind solutions, depending on the polarity of the large-scale poloidal magnetic field B_0 threading the disk. When B_0.Omega>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ~50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B_0.Omega<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ~20%) and negligible magnetic braking. Moreover, we find that when B_0.Omega>0, the laminar region extends farther to ~15 AU before the magneto-rotational instability sets in, while for B_0.Omega<0, the laminar region extends only to ~3-5 AU for a typical PPD accretion rates. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries. Issues with the symmetry of the wind solutions and grain abundance are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا